Порівняльний аналіз сучасних алгоритмів автоматизованої сегментації зображень
Основний зміст сторінки статті
Анотація
Розглянуто алгоритми автоматизованої сегментації на основі кластеризації по k-середніх, максимізації-очікування, зсуву середнього, нормалізованого перетину графів, виваженої агрегації, статистичного об'єднання областей, JSEG, HGS та ROI-SEG. Подано результати сегментації, а також проведений аналіз якості та швидкодії кожного з алгоритмів на природному, супутниковому та містить текстури зображеннях
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
D. Forsajt and Z. Pons., Komp'yuternoe zrenie [Computer vision], Moscow: Izdatel’skij dom «Vil’yams», 2004, p. 928.
D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 5, pp. 603–619, May 2002. DOI: 10.1109/34.1000236
J. Shi and J. Malik, “Normalized cuts and image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug. 2000. DOI: 10.1109/34.868688
M. Galun, E. Sharon, R. Basri, and A. Brandt, “Texture segmentation by multiscale aggregation of filter responses and shape elements”, in Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003, vol. 1, pp. 716–723. DOI:10.1109/ICCV.2003.1238418
R. Nock and F. Nielsen, “Statistical region merging”, IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 11, pp. 1452–1458, Nov. 2004. DOI: 10.1109/TPAMI.2004.110
Y. Deng and B. Manjunath, “Unsupervised segmentation of color-texture regions in images and video”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp. 800–810, Aug. 2001. DOI: 10.1109/34.946985
M. A. Hoang, J.-M. Geusebroek, and A. W. M. Smeulders, “Color Texture Measurement and Segmentation”, Signal Processing, vol. 85, no. 2, pp. 265–275, 2005.
J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide Baseline Stereo from Maximally Stable Extremal Regions”, in Procedings of the British Machine Vision Conference 2002, Cardiff, 2002, pp. 36.1–36.10.
M. Donoser and H. Bischof, “ROI-SEG: Unsupervised Color Segmentation by Combining Differently Focused Sub Results”, in 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007, pp. 1–8. DOI:10.1109/CVPR.2007.383231
A. Hoover, “An experimental comparison of range image segmentation algorithms”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 7, pp. 673–689, Jul. 1996. DOI: 10.1109/34.506791
S. Lloyd, “Least squares quantization in PCM”, IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982. DOI: 10.1109/TIT.1982.1056489
A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions”, Bulletin of the Calcutta Mathematical Society, no. 35, pp. 99–109, 1943.
The Prague Texture Segmentation Datagenerator and Benchmark. http://mosaic.utia.cas.cz/index.php 19.05.2011
The Berkeley Segmentation Dataset and Benchmark. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ – 19.05.2011
http://maps.yandex.ru/ 19.05.2011