Energy loss model for hydroacoustic information offshore nets
Main Article Content
Abstract
The power loss model when the signals propagating in the information network hydroacoustic channel on the shelf is considered. The experimental signal propagation power loss data are described by the trend approximated using the functions of the exponential and polynomial type. It is shown that in the case of the signal propagation in the bottom sound channel the trend is described by this approximating functions with the confidence no less than 0,9
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Proakis J.G., Sozer E.M., Rice J.A., Stojanovic M.. Shallow water acoustic networks, IEEE Com. Mag., 2001, Nov, pp. 114–119 DOI: 10.1109/35.965368
Sozer M., Stojanovic M., Proakis J.G. Underwater acoustic networks, IEEE Journ. Oceanic Eng., 2000, Vol. 25, no. 1, pp. 72–83 DOI: 10.1109/48.820738
Rice J.A. Telesonar signaling and seaweb underwater wireless networks ftp://ftp.rta.nato.int/PubFullText/RTO/MP/RTO-MP-049/MP-049-17.pdf (1.05.10)
http://www.tubing.omicro.ru/navigation_safety html (20.02.10)
A.E. Kolesnikova, Terminologicheskij slovar'-spravochnik po gidroakustike [Glossary-reference book for hydroacoustics], Leningrad: Sudostroenie, 1989, p. 368
Plakhotnыi N.V., Tykhanovskyi V.V., Kebkal, A.H. Osobennosty shyrokoveshchatelnoi peredachy dannыkh v podvodnыkh akustycheskykh sensornыkh setiakh [Features of broadcast data transmission in underwater acoustic sensor networks], Problemy informatyzatsii ta upravlinnia: Zbirnyk naukovykh prats, Kiev: НАУ, 2009, vol 25, no. 1, pp.151–158
Stojanovic M., Zvonar Z. Multichannel processing of broad-band multiuser communication signals in shallow water acoustic channels, IEEE Journ. Oceanic Eng., 1996, Vol. 21, no. 2, P. 156–166 DOI: 10.1109/48.486791
Edelmann G.F., Song H.C., Kim S., Hodgkiss W.S., Kuperman W.A., Akal T. Underwater acoustic communications using time reversal , IEEE Journ. Oceanic Eng., 2005, Vol. 30, no. 4, pp. 852–864 DOI: 10.1109/JOE.2005.862137
Gibson J., Larraza A., Rice J., Smith K., Xie G. On the impacts and benefits of implementing fullduplex communications links in an underwater acoustic network http://www.demine.org./SCOT/Papers/Gibson.pdf (29.10.10)
Divizinyuk M.M. Akusticheskie polya CHernogo moray [Acoustic fields of the Black Sea], Sevastopol: Gosokeanarium, 1998, p. 352
Furduev A.V. Akusticheskij monitoring izmenchivosti podvodnoj sredy. Eksperimental'naya proverka novyh metodov [Acoustic monitoring of the variability of the underwater environment. Experimental verification of new methods], Akusticheskij zhurnal 2001, vol. 47, no. 3, pp. 422–430
Zamarenova L.N., Skipa M.I. Akusticheskaya model' kvazistacionarnyh trass. CHast' 1. Koncepciya issledovanij [Acoustic model of quasi-stationary paths. Part 1. Research concept], Gіdroakustichnij zhurnal (Problemi, metodi ta zasobi doslіdzhen' Svіtovogo okeanu): Zb. nauk. pr., Zaporizhzhia : NTC PAS NANU, 2009, no. 6, pp. 10–23.
Zamarenova L.N., Skipa M.I. Akusticheskaya model' kvazistacionarnyh trass. CHast' 2. Ocenka fizicheskoj adekvatnosti akusticheskoj modeli [Acoustic model of quasi-stationary paths. Part 2. Assessment of the physical adequacy of the acoustic model], Gіdroakustichnij zhurnal (Problemi, metodi ta zasobi doslіdzhen' Svіtovogo okeanu): Zbіrnik naukovih prac', Zaporizhzhia: NTC PAS NANU, 2010, no. 7, pp. 58–72
Zamarenova L.N., Skipa M.I.. Struktura zvukovogo polya na shel'fe severo-zapadnoj chasti CHernogo morya: Eksperiment [Sound field structure on the shelf of the northwestern part of the Black Sea: An Experiment], Konsonans 2009, Akustichnij simpozіum (29 veresnya – 1 zhovtnya 2009 r.): Zbіrnik prac', Kiev: Іnstitut gіdromekhanіki NANU, 2009, pp. 182–188
Bogushevich V.K., Zamarenova L.N., Skipa M.I.. Osobennosti vliyaniya nizhnej granicy volnovoda na uglovuyu strukturu zvukovogo polya v shel'fovyh rajonah severozapadnoj chasti CHernogo moray [Features of the influence of the lower boundary of the waveguide on the angular structure of the sound field in the shelf areas of the northwestern part of the Black Sea], Morskoj gidrofiz. zh.,2003, no. 5, pp. 40–46
Brekhovskih L.M., Lysanov YU.P. Teoreticheskie osnovy akustiki okeana [Theoretical Foundations of Ocean Acoustics], Leningrad: Gidrometeoizdat, 1982, p. 264
U. Kuperman, F. Ensen Akustika dna okeana [Ocean floor acoustics], Moscow: Mir, 1984, p. 454
Weston D.E. Intensity range relations in oceanographic acoustic, Journ. Sound and Vibr, 1971, Vol. 18, no. 2, pp. 271–287. https://doi.org/10.1016/0022-460X(71)90350-6