Перспективні наноструктури та нанокомпоненти електроніки
Основний зміст сторінки статті
Анотація
У статті розглянуто перспективні матеріали та нанорозмірні структури для створення електронних компонентів. Проведено аналіз фізичних процесів та наведено приклади реалізації наноструктур для створення сенсорів, транзисторів, осередків пам'яті, пасивних елементів наноінтегральних схем та ін.
Блок інформації про статтю

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
M. Curreli, F. Ishikawa, R. Cote, and M. Thompson, “Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs”, IEEE Transactions on Nanotechnology, vol. 7, no. 6, pp. 651–667, Nov. 2008. DOI:10.1109/TNANO.2008.2006165
K. Galatsis, “Alternate State Variables for Emerging Nanoelectronic Devices”, IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 66–75, Jan. 2009. DOI:10.1109/TNANO.2008.2005525
P. Tarakeshwar, J. Palacios, and D. Kim, “Electrode–Molecule Interface Effects on Molecular Conductance”, IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 16–21, Jan. 2009. DOI:10.1109/TNANO.2008.2005306
D. Ahn, “Fabrication and Characterization of Sidewall Defined Silicon-on-Insulator Single-Electron Transistor”, IEEE Transactions on Nanotechnology, vol. 7, no. 5, pp. 544–550, Sep. 2008. DOI:10.1109/TNANO.2008.927042
K. Miyaji, M. Saitoh, and T. Hiramoto, “Compact analytical model for room-temperature-operating silicon single-electron transistors with discrete quantum energy levels”, IEEE Transactions On Nanotechnology, vol. 5, no. 3, pp. 167–173, May 2006. DOI:10.1109/TNANO.2006.869949
S.V. Morozov, K.S. Novoselov, and A.K. Geim, “Electronic transport in graphene”, Advances in Physical Sciences, vol. 178, no. 7, pp. 776–780, 2008.
F. Rana, “Graphene Terahertz Plasmon Oscillators”, IEEE Transactions on Nanotechnology, vol. 7, no. 1, pp. 91–99, Jan. 2008. DOI:10.1109/TNANO.2007.910334
M. Ryzhii and V. Ryzhii, “Injection and Population Inversion in Electrically Induced p–n Junction in Graphene with Split Gates”, Japanese Journal of Applied Physics, vol. 46, no. 3L, p. L151, Feb. 2007. DOI:10.1143/JJAP.46.L151
Y. Huang, W.-Y. Yin, and Q. H. Liu, “Performance Prediction of Carbon Nanotube Bundle Dipole Antennas”, IEEE Transactions on Nanotechnology, vol. 7, no. 3, pp. 331–337, May 2008. DOI:10.1109/TNANO.2007.915017
K. Alam and R. Lake, “Role of Doping in Carbon Nanotube Transistors With Source/Drain Underlaps”, IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 652–658, Nov. 2007. DOI:10.1109/TNANO.2007.908170
A. Lin, N. Patil, A. Badmaev, L. De Arco, S. Mitra, and H.-S. Wong, “Threshold Voltage and On–Off Ratio Tuning for Multiple-Tube Carbon Nanotube FETs”, IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 4–9, Jan. 2009. DOI:10.1109/TNANO.2008.2004706
N. Patil, S. Mitra, and H.-S. Wong, “Circuit-Level Performance Benchmarking and Scalability Analysis of Carbon Nanotube Transistor Circuits”, IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 37–45, Jan. 2009. DOI:10.1109/TNANO.2008.2006903
P. Chan and Z. Tang, “Novel Local Silicon-Gate Carbon Nanotube Transistors Combining Silicon-on-Insulator Technology for Integration”, IEEE Transactions on Nanotechnology, vol. 8, no. 2, pp. 260–268, Mar. 2009. DOI:10.1109/TNANO.2008.2011773
M. S. Sarto, A. Tamburrano, and M. D’Amore, “New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects”, IEEE Transactions on Nanotechnology, vol. 8, no. 2, pp. 214–225, Mar. 2009. DOI:10.1109/TNANO.2008.2010253
S. Kar and P. Ajayan, “Fabrication and Electrical Characterization of Densified Carbon Nanotube Micropillars for IC Interconnection”, IEEE Transactions on Nanotechnology, vol. 8, no. 2, pp. 196–203, Mar. 2009. DOI:10.1109/TNANO.2008.2011774
T. Yamada, M. Suzuki, Y. Ominami, A. Cassell, M. Meyyappan, and C. Yang, “Structural and Electrical Characterization of Carbon Nanofibers for Interconnect Via Applications”, IEEE Transactions on Nanotechnology, vol. 6, no. 6, pp. 688–695, Nov. 2007. DOI:10.1109/TNANO.2007.907400
D. Akinwande, Y. Nishi, and H.-S. Wong, “Carbon Nanotube Quantum Capacitance for Nonlinear Terahertz Circuits”, IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 31–36, Jan. 2009. DOI:10.1109/TNANO.2008.2005185
A. Ognev and A. Samardak, “Spintronics:physical principles, devices, prospects”, Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, no. 4, pp. 70–80, 2006.
J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal Intrinsic Spin Hall Effect”, Physical Review Letters, vol. 92, no. 12, Mar. 2004. DOI:10.1103/PhysRevLett.92.126603
Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall Effect in Semiconductors”, Science, vol. 306, no. 5703, pp. 1910–1913, Dec. 2004 DOI:10.1126/science.1105514
N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-Induced Polarization and the Spin Hall Effect at Room Temperature”, Physical Review Letters, vol. 97, no. 12, Sep. 2006. DOI:10.1103/PhysRevLett.97.126603
B. Huang, D. J. Monsma, and I. Appelbaum, “Coherent Spin Transport through a 350 Micron Thick Silicon Wafer”, Physical Review Letters, vol. 99, no. 17, Oct. 2007. DOI:10.1103/PhysRevLett.99.177209
Y. Gulyaev, P. Zilberman, and E. Epshtein, “How does spin current transfer. Spintronics of multilayer ferromagnets”, Advances in Physical Sciences, vol. 178, no. 4, pp. 433–436, 2008.
Y. Gulyaev, P. Zilberman, A. Panas, and E. Epstein, “Spintronics: exchange switching of ferromagnetic metalstransitions at low current density”, Advances in Physical Sciences, no. 4, pp. 359–368, 2009.
A. Fert, “Origin, development and prospects of spintronics”, Advances in physical sciencesSciences, vol. 178, no. 12, pp. 1336–1348, 2008.
R. Morgunov, F. Mushenok, A. Dmitriev, O. Kazakova, and Y. Tanimoto, “Electronicspin resonance in oriented Ge0.99Cr0.01 nanowires”, Solid State Physics, vol. 51, no. 8, pp. 1613–1618, 2009.
Y. Kawata, Y. Tsuchiya, S. Oda, and H. Mizuta, “Study of Single-Charge Polarization on a Pair of Charge Qubits Integrated Onto a Silicon Double Single-Electron Transistor Readout”, IEEE Transactions on Nanotechnology, vol. 7, no. 5, pp. 617–623, Sep. 2008. DOI:10.1109/TNANO.2008.2004408
V. Pogosov, E. Vasyutin, V. Kurbatsky, and A. Babich, “Single-electron effects in point structures”, Nanosystems,nanomaterials, nanotechnologies, vol. 5, pp. 39–74, 2007.
“Low-Cost and Highly Heat Controllable Capacitorless PiFET (Partially Insulated FET) 1T DRAM for Embedded Memory”, IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 100–105, Jan. 2009. DOI:10.1109/TNANO.2008.2006502
H. Jeong, “A New Capacitorless 1T DRAM Cell: Surrounding Gate MOSFET With Vertical Channel (SGVC Cell)”, IEEE Transactions On Nanotechnology, vol. 6, no. 3, pp. 352–357, May 2007. DOI:10.1109/TNANO.2007.893575



