Використання методів кластеризації в системах нечіткого виводу для діагностики хвороби Альцгеймера на основі ПЕТ-зображень

Основний зміст сторінки статті

Ihor Eduardovych Krashenyi
Anton Oleksandrovych Popov
Haver Ramirez
Huan Manuel Gorriz

Анотація

Робота присвячена використанню методів кластеризації в системах нечіткого виводу для класифікації ПЕТ-зображень з метою діагностики хвороби Альцгеймера. Оцінені характеристики кожного з трьох представлених кластеризаційних методів: Subtractive Clustering, C-means  та Fuzzy Grid Partition. Надані рекомендації щодо використання методу Subtractive Clustering у системах нечіткого виводу для автоматичної діагностики хвороби Альцгеймера, як методу, що показав найкращі результати з AUC= 0.8791.

Бібл. 20, рис. 3, табл. 3.

Блок інформації про статтю

Як цитувати
Krashenyi, I. E., Popov, A. O., Ramirez, H., & Gorriz, H. M. (2016). Використання методів кластеризації в системах нечіткого виводу для діагностики хвороби Альцгеймера на основі ПЕТ-зображень. Електроніка та Зв’язок, 21(2), 56–62. https://doi.org/10.20535/2312-1807.2016.21.2.51681
Розділ
Біомедичні прилади та системи

Посилання

Mayeux, R. (2010). Early Alzheimer’s disease. New England Journal of Medicine 362, pp. 2194–2201.

Nowotny, P., Kwon, J.M., and Goate, A. M. (2001). Alzheimer Disease. In Encyclopedia of Life Sci-ences, John Wiley & Sons, Ltd, ed. (Chichester, UK: John Wiley & Sons, Ltd),.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8, 338–353.

Zadeh, L. A. (1968). Fuzzy algorithms. Information and Control 12, 94–102.

Zadeh, L. A. (1980). Fuzzy sets versus probability. Proceedings of the IEEE 68, 421–421.

Sharma, D. (2011). Designing and modeling fuzzy control Systems. International Journal of Computer Applications 16, 46–53.

Hu, Y.-C. (2007). SIMPLE FUZZY GRID PARTITION FOR MINING MULTIPLE-LEVEL FUZZY SEQUENTIAL PATTERNS. Cybernetics and Systems 38, 203–228.

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Com-puters & Geosciences 10, 191–203.

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms (New York: Plenum Press).

Cannon, R. L., Dave, J. V., and Bezdek, J. C. (1986). Efficient implementation of the fuzzy c-means clustering algorithms. Pattern Analysis and Machine Intelligence, IEEE Transactions on pp. 248–255.

Yager, R. R., and Filev, D. P. (1994). Approximate clustering via the mountain method. IEEE Transac-tions on Systems, Man, and Cybernetics 24, pp. 1279–1284.

Alemán-Gómez Y., Melie-García L., Valdés-Hernandez. P. (2006) IBASPM: Toolbox for automatic parcellation of brain structures. The 12th Annual Meeting of the Organization for Human Brain Map-ping, June 11-15, 2006, Florence, Italy. Available on CD-Rom in NeuroImage, Vol. 27, No.1.

STUDENT (1908). THE PROBABLE ERROR OF A MEAN. Biometrika 6, pp. 1–25.

Rice, J. A. (2007). Mathematical statistics and data analysis (Belmont, CA: Thomson/Brooks/Cole).

Arlot, S., and Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statis-tics Surveys 4, pp. 40–79.

Geisser, S. (1993). Predictive inference: an introduction (New York: Chapman & Hall).

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, mark-edness and correlation.

Goutte, C., and Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Advances in Information Retrieval, (Springer), pp. 345–359.

Metz, C. E. (1978). Basic principles of ROC analysis. In Seminars in Nuclear Medicine, (Elsevier), pp. 283–298.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters 27, pp. 861–874.