Interpretability problem of classification signs in acoustic signals classification task

Main Article Content

Arkadii Mykolaiovych Prodeus

Abstract

The problem of classification signs interpretability (clearness to the end user) in hydrolocation is considered. The expediency of application of interpreted classification signs in classification human-machine systems, which are constructed with usage of expert systems technology, is shown.

Reference 27, figures 3

Article Details

How to Cite
Prodeus, A. M. (2013). Interpretability problem of classification signs in acoustic signals classification task. Electronics and Communications, 17(6), 26–35. https://doi.org/10.20535/2312-1807.2012.17.6.11393
Section
Theory of signals and systems

References

Experimental Test of Some Statistical Technique for Active Acoustic Target detection and Classification. - Panama City, Florida : Naval Coastal Systems Laboratory, January, 1976. – 78 p.

Ishibuchi H. Selecting Linguistic Classification Rules by Two-Objective Genetic Algorithms / Ishibuchi H., Murata T., Turksen I.B. // Proc. of 1995 IEEE International Conference on Systems, Man and Cybernetics. – Vancouver, Canada, October 1995. – P. 1410–1415.

Ishibuchi H. Performance Evaluation of Fuzzy Rule-Based Classification Systems Obtained by Multi-Objective Genetic Algorithms / Ishibuchi H., Murata T., Gen M. // Computers ind. Engng. – 1998. – Vol. 35. – Nos 3–4. – P. 575–578.

Ishibuchi H., Nii M., Tanaka K. Lingvistic rule extraction from neural networks for high-dimensional classification problems / Ishibuchi H. // Complexity International, vol. 6, 1998. [Электронный ресурс]. – Режим доступа к ресурсу: http://life.csu.edu.au/complex/ci/vol6/ishibuchi-nii/

Ishibuchi H. Interpretability Issues in Fuzzy Genetics-Based Machine Learning for Linguistic Modelling / Ishibuchi H., Yamamoto T. // Proceedings of Modelling with Words. – 2003. – P. 209-228.

Hydroacoustic classification targets. – San Diego, California : US Navy Electronics Lab, 1965. – 180 p.

Sammon J.W. Interactive Pattern Analysis and Classification / Sammon J.W. // IEEE Transaction on Computers, C-18. – 1970. – Chapter 10. – P. 594–616.

Stewart C. Identification of Periodically Amplitude Moduleted Targets / Stewart C. – Ft. Belvoir : Defense Technical Information Center, 1978. – 137 p.

Bobrovskiy A.I. Neurocomputing technology in problems of classification of marine objects / Bobrovskiy A.I. [at al]] // St.Petersburg’s Journal of electronics, – 1997. – №2 (15). – Pp. 48–52. (Rus)

Wald A. Sequential Analysis / Wald A. – M.: Gosizdat fizmatliteratury, 1960. – 327 p. (Rus)

Vlasova J.V. Application of genetic algorithms to the problem of signal classification (application in BCI) / Vlasova J.V. // Proc. XVI International scientific conference of students, post graduates and young scientists «LOMONOSOV-2009», section «Computational Mathematics and Cybernetics». – M.: MSU of M.V. Lomonosov, 2009. – P. 17. (Rus)

Galushkin A.I. Neural networks: basics of theory. / Galushkin A.I. – M.: Goriachaia linia-Telekom, 2010. – 496 p. (Rus)

Gorelik A.L. Recognition methods / Gorelik A.L., Skripkin V.A. – M.: Vyshaia shkola, 1984. – 208 p. (Rus)

Giarratano J. Expert systems: principles and programming / Giarratano J., Riley G. – M.: Williams, 2007. – 1152 p. (Rus)

Zheretinceva N.N. Neural network method for identifying surface objects in the automation solution navigation: PhD Thesis / Zheretinceva N.N. // Vladivostok, 2008. – 162 p. (Rus)

Night U.S. Digital signal processing in sonar systems / Night U.S., Pridem R.G., Key S.M. // Proc. IEE. – 1981. – V.69. – №11. – Pp.84–154. (Rus)

Nechaev J.I. Neural network technology onboard intelligent real-time systems / Nechaev J.I. [Online]. – Available at: http://library.mephi.ru/data/scientific-sessions /2002/Lec_Neuro_1/114.html (Rus)

Novoselova N.A. Construction of fuzzy classification model with multi-criteria genetic algorithm / Novoselova N.A. // Artificial intelligence. – 2006. – №3. – Pp. 613–622. (Rus)

Novoselova N.A. Building a fuzzy neural network model to solve the problems of classification / Novoselova N.A. // Informatics. – 2006. – № 3. – Pp. 5–14. (Rus)

Omelchenko V.A. Fundamentals of the theory of spectral signal recognition / Omelchenko V.A. – Charkov: Publisher at Kharkov State University, 1983. – 156 p. (Rus)

Panchenko T. Genetic algorithms: a teach book / Panchenko T. – Astrahan: Publishing house "Astrakhan University", 2007. – 87 p. (Rus)

Prodeus A.N. Generalization of experience designing stations target classification / Prodeus A.N., Aleschenko O.M., Cherednichenko V.P. // Proc. VII Interdisciplinary Scientific and Technical Conference on IT Technology. – Belcy, 1988. – P. 23. (Rus)

Prodeus A.N. Expert system for the recognition of objects by echoes / Prodeus A.N., Aleschenko O.M., Cherednichenko V.P. // Shipbuilding industry. Ser. Acoustics. – 1989. – No. 31. – Pp. 54 –65. (Rus)

Prodeus A.N. Theoretical substantiation and practical implementation of digital sonar signal classification systems: DSc Thesis / Prodeus A.N. - K., 2012. - 374 p. (Rus)

Russel S. Artificial Intelligenece: A Modern Approach / Russel S., Norvig P. – М. : Publishing house "Williams", 2006. – 1408 p. (Rus)

Waterman D. A Guide to Expert Systems / Waterman D. – М.: Mir, 1989. – 388 p. (Rus)

Fukunaga K. Introduction to Statistical Pattern Recognition / Fukunaga K. – М.: Nauka, 1979. – 368 p. (Rus)