Проблема интерпретируемости классификационных признаков в задаче классификации акустических сигналов

##plugins.themes.bootstrap3.article.main##

Arkadii Mykolaiovych Prodeus

Аннотация

Произведен обзор подходов к выбору классификационных признаков. При этом рассмотрена проблема интерпретируемости (понятности конечному пользователю) классификационных признаков в гидролокации. Показана целесообразность применения интерпретируемых классификационных признаков в человеко-машинных системах классификации, построенных с использованием технологии экспертных систем

##plugins.themes.bootstrap3.article.details##

Как цитировать
Prodeus, A. M. (2013). Проблема интерпретируемости классификационных признаков в задаче классификации акустических сигналов. Электроника и Связь, 17(6), 26–35. https://doi.org/10.20535/2312-1807.2012.17.6.11393
Раздел
теория сигналов и систем

Библиографические ссылки

Experimental Test of Some Statistical Technique for Active Acoustic Target detection and Classification. - Panama City, Florida : Naval Coastal Systems Laboratory, January, 1976. – 78 p.

Ishibuchi H. Selecting Linguistic Classification Rules by Two-Objective Genetic Algorithms / Ishibuchi H., Murata T., Turksen I.B. // Proc. of 1995 IEEE International Conference on Systems, Man and Cybernetics. – Vancouver, Canada, October 1995. – P. 1410–1415.

Ishibuchi H. Performance Evaluation of Fuzzy Rule-Based Classification Systems Obtained by Multi-Objective Genetic Algorithms / Ishibuchi H., Murata T., Gen M. // Computers ind. Engng. – 1998. – Vol. 35. – Nos 3–4. – P. 575–578.

Ishibuchi H., Nii M., Tanaka K. Lingvistic rule extraction from neural networks for high-dimensional classification problems / Ishibuchi H. // Complexity International, vol. 6, 1998. [Электронный ресурс]. – Режим доступа к ресурсу: http://life.csu.edu.au/complex/ci/vol6/ishibuchi-nii/

Ishibuchi H. Interpretability Issues in Fuzzy Genetics-Based Machine Learning for Linguistic Modelling / Ishibuchi H., Yamamoto T. // Proceedings of Modelling with Words. – 2003. – P. 209-228.

Hydroacoustic classification targets. – San Diego, California : US Navy Electronics Lab, 1965. – 180 p.

Sammon J.W. Interactive Pattern Analysis and Classification / Sammon J.W. // IEEE Transaction on Computers, C-18. – 1970. – Chapter 10. – P. 594–616.

Stewart C. Identification of Periodically Amplitude Moduleted Targets / Stewart C. – Ft. Belvoir : Defense Technical Information Center, 1978. – 137 p.

Bobrovskiy A.I. Neurocomputing technology in problems of classification of marine objects / Bobrovskiy A.I. [at al]] // St.Petersburg’s Journal of electronics, – 1997. – №2 (15). – Pp. 48–52. (Rus)

Wald A. Sequential Analysis / Wald A. – M.: Gosizdat fizmatliteratury, 1960. – 327 p. (Rus)

Vlasova J.V. Application of genetic algorithms to the problem of signal classification (application in BCI) / Vlasova J.V. // Proc. XVI International scientific conference of students, post graduates and young scientists «LOMONOSOV-2009», section «Computational Mathematics and Cybernetics». – M.: MSU of M.V. Lomonosov, 2009. – P. 17. (Rus)

Galushkin A.I. Neural networks: basics of theory. / Galushkin A.I. – M.: Goriachaia linia-Telekom, 2010. – 496 p. (Rus)

Gorelik A.L. Recognition methods / Gorelik A.L., Skripkin V.A. – M.: Vyshaia shkola, 1984. – 208 p. (Rus)

Giarratano J. Expert systems: principles and programming / Giarratano J., Riley G. – M.: Williams, 2007. – 1152 p. (Rus)

Zheretinceva N.N. Neural network method for identifying surface objects in the automation solution navigation: PhD Thesis / Zheretinceva N.N. // Vladivostok, 2008. – 162 p. (Rus)

Night U.S. Digital signal processing in sonar systems / Night U.S., Pridem R.G., Key S.M. // Proc. IEE. – 1981. – V.69. – №11. – Pp.84–154. (Rus)

Nechaev J.I. Neural network technology onboard intelligent real-time systems / Nechaev J.I. [Online]. – Available at: http://library.mephi.ru/data/scientific-sessions /2002/Lec_Neuro_1/114.html (Rus)

Novoselova N.A. Construction of fuzzy classification model with multi-criteria genetic algorithm / Novoselova N.A. // Artificial intelligence. – 2006. – №3. – Pp. 613–622. (Rus)

Novoselova N.A. Building a fuzzy neural network model to solve the problems of classification / Novoselova N.A. // Informatics. – 2006. – № 3. – Pp. 5–14. (Rus)

Omelchenko V.A. Fundamentals of the theory of spectral signal recognition / Omelchenko V.A. – Charkov: Publisher at Kharkov State University, 1983. – 156 p. (Rus)

Panchenko T. Genetic algorithms: a teach book / Panchenko T. – Astrahan: Publishing house "Astrakhan University", 2007. – 87 p. (Rus)

Prodeus A.N. Generalization of experience designing stations target classification / Prodeus A.N., Aleschenko O.M., Cherednichenko V.P. // Proc. VII Interdisciplinary Scientific and Technical Conference on IT Technology. – Belcy, 1988. – P. 23. (Rus)

Prodeus A.N. Expert system for the recognition of objects by echoes / Prodeus A.N., Aleschenko O.M., Cherednichenko V.P. // Shipbuilding industry. Ser. Acoustics. – 1989. – No. 31. – Pp. 54 –65. (Rus)

Prodeus A.N. Theoretical substantiation and practical implementation of digital sonar signal classification systems: DSc Thesis / Prodeus A.N. - K., 2012. - 374 p. (Rus)

Russel S. Artificial Intelligenece: A Modern Approach / Russel S., Norvig P. – М. : Publishing house "Williams", 2006. – 1408 p. (Rus)

Waterman D. A Guide to Expert Systems / Waterman D. – М.: Mir, 1989. – 388 p. (Rus)

Fukunaga K. Introduction to Statistical Pattern Recognition / Fukunaga K. – М.: Nauka, 1979. – 368 p. (Rus)