Comparison of efficiency recombination of nonequilibrium carriers in structures with quantum dots and quantum wells, grown by mocvd

Main Article Content

Yu. Avksentyev
Пилип Миколайович Ларін
P. Parfenuk

Abstract

The article presents the results of comparing the efficiency of recombination of nonequilibrium carriers in the InGaN quantum dots (QDs) and quantum wells (QWs), emitting in the green region of the spectrum. Results of studies using optical temperature-dependent photoluminescence (PL) showed that the internal quantum efficiency of the InGaN quantum dots at room temperature was 8.7 times greater than that obtained for the InGaN quantum wells, due to better spatial localization of electrically charged particles. The results of measurements of photoluminescence spectra at different levels of laser excitation showed that the effect of polarization-built electric fields on recombination processes of electrically charged particles in Kant points are negligible compared to the quantum wells. The results show that the InGaN quantum dots improve the luminescence efficiency of the LEDs in green and blue spectral bands.

Reference 19, figures 4, tables 1.

Article Details

How to Cite
Avksentyev, Y., Ларін, П. М., & Parfenuk, P. (2014). Comparison of efficiency recombination of nonequilibrium carriers in structures with quantum dots and quantum wells, grown by mocvd. Electronics and Communications, 19(2), 30–35. https://doi.org/10.20535/2312-1807.2014.19.2.142193
Section
Vacuum, plasma and quantum electronics

References

D. Leonard, M. Krinshnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petroff, Appl. Phys. Lett. 63 (1993) 3203.

F.A. Ponce, D.P. Bour, Nature 386 (1997) 351.

S. Nakamura, Science 281 (1998) 956.

Y.K. Su, S.J. Change, IEEE Trans. Electron Dev. 49 (2002) 1361.

L.W. Wu, T.C. Wen, IEEE J. Quantum Elec-tron, 38 (2002) 446.

B. Damilano, N. Grandjean, Appl. Phys. Lett., 75 (1999) 3751.

K. Tachibana, T. Someya, Appl. Phys. Lett., 74 (1999) 383.

C. Adelmann, J. Simon, Appl. Phys. Lett., 76 (2000) 1570.

L.W. Ji, Y.K. Su, S.J. Chang, J. Cryst. Growth 249 (2003) 144.

L.W. Ji, T.H. Fang, Mater. Lett. 57 (2003) 4218.

I.K. Park, M.K. Kwon, C.Y. Cho, J.Y. Kim, C.H. Cho and S.J. Park, Appl. Phys. Lett. 92, 253105 (2008).

D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).

J.D. Lambkin, L. Considine, S. Walsh, G.M. Connor, C.J. McDonagh and T.J. Glynn, Appl. Phys. Lett. 65, 73 (1994).

W. Stadler, D.M. Hofmann, H.C. Alt, T. Mus-chik, B.K. Meyer, E. Weigel, G. Muller-Vogt, M. Salk, E. Rupp and K. W. Benz, Phys. Rev. B 51, 10619 (1995).

S.H. Park, J.J. Kim and H.M. Kim, J. Korean Phys. Soc. 45, 582 (2004).

Y.H. Cho, H.S. Kwack, B.J. Kwon, J. Barjon, J. Brault, B. Daudin and L.S. Dang, Appl. Phys. Lett. 89, 251914 (2006).

J. Bai, T. Wang and S. Sakai, Appl. Phys. 88, 4729 (2000).

S. Fafard, R. Leon, D. Leonard, J.L. Merz and P.M. Petroff, Phys. Rev. B 52, 5752 (1995).

Y. Narukawa, Y. Kawakami, S. Fujita and S. Nakamura, Phys. Rev. B 59, 10283 (1997).