Modeling the influence of template dimensions on dislocations nanostructures during selective epitaxy of III-nitrides

Main Article Content

N.O. Lyakhova

Abstract

A simplified model of the process is considered nucleation of defects for optimization of template layers of nanostructures with three-dimensional restrictions When using optimized porous anode template layers aluminum oxide formed on Si (100) substrate, a nitride layer was grown by the chloride-hydride gas-phase epitaxy method gallium, which turned out to be nonpolar with (11 2 0) α- orientation and low anisotropy. Spectra micro cathodoluminescence of the grown films confirms the low density of packing defects

Article Details

How to Cite
Lyakhova, N. . (2011). Modeling the influence of template dimensions on dislocations nanostructures during selective epitaxy of III-nitrides. Electronics and Communications, 16(3), 39–43. https://doi.org/10.20535/2312-1807.2011.16.3.264219
Section
Solid-state electronics

References

V. I. Osinskii, F. M. Katsapov, and E. A. Tyavlovskaya, “Structural perfection of selective GaAs regions in Si substrate windows”, Physica Status Solidi (a), vol. 82, no. 2, pp. 399–403, Apr. 1984 DOI: 10.1002/pssa.2210820208

V. I. Osinsky, P. F. Oleksenko, A. V. Palagin, and V. G. Verbitsky, “Problems of integrationstructures of heteroelectronics with siliconIS”., Technology and design inelectronic equipment, no. 1, pp. 3–17, Jan. 1999

V. I. Osinsky, V. A. Labunov, G. G. Gorokh, N. M. Lyakhova, N. O. Lyakhova, and D. V. Solovey, “TempletniBalls for Si/A3B5 nanostructures”, Elektronikaand communication, no. 1-2, pp. 76–90, 2008

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures”, Applied Physics Letters, vol. 69, no. 27, pp. 4188–4190, Dec. 1996. DOI:10.1063/1.116981

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Applied Physics Letters, vol. 70, no. 8, pp. 981–983, Feb. 1997 DOI:10.1063/1.118455

T. Detchprohm, “Green light emitting diodes on a-plane GaN bulk substrates”, Applied Physics Letters, vol. 92, no. 24, p. 241109, Jun. 2008 DOI:10.1063/1.2945664

S.-M. Hwang, “Demonstration of nonpolar a-plane InGaN/GaN light emitting diode on r-plane sapphire substrate”, Applied Physics Letters, vol. 95, no. 7, p. 071101, Aug. 2009 DOI: 10.1063/1.3206666

P. Waltereit, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”, Nature, vol. 406, no. 6798, pp. 865–868, Aug. 2000 DOI:10.1038/35022529

A. Chakraborty, “Demonstration of Nonpolar -Plane InGaN/GaN Light-Emitting Diodes on Free-Standing -Plane GaN Substrates”, Japanese Journal of Applied Physics, vol. 44, no. No. 5, pp. L173-L175, Jan. 2005 DOI:10.1143/JJAP.44.L173

M. Funato, “Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates”, Japanese Journal of Applied Physics, vol. 45, no. No. 26, pp. L659-L662, Jun. 2006 DOI: 10.1143/JJAP.45.L659

B. Neubert, “Semipolar GaN/GaInN LEDs with more than 1mW optical output power”, Journal of Crystal Growth, vol. 298, pp. 706–709, Jan. 2007 DOI:10.1016/j.jcrysgro.2006.10.125

M. C. Schmidt, “High Power and High External Efficiency -Plane InGaN Light Emitting Diodes”, Japanese Journal of Applied Physics, vol. 46, no. No. 7, pp. L126-L128, Feb. 2007 DOI:10.1143/JJAP.46.L126

K.-C. Kim, “Improved electroluminescence on nonpolarm -plane InGaN/GaN quantum wells LEDs”, physica status solidi (RRL) – Rapid Research Letters, vol. 1, no. 3, pp. 125–127, May 2007 DOI:10.1002/pssr.200701061

H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges”, IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 88–100, Jan. 2010 DOI:10.1109/TED.2009.2033773

L. Freund, “Dislocation Mechanisms of Relaxation in Strained Epitaxial Films”, MRS Bulletin, vol. 17, no. 7, pp. 52–60, Jul. 1992 DOI:10.1557/S088376940004166X

I. A. Ovid’ko, “Interfaces and misfit defects in nanostructured and polycrystalline films”, Rev. Adv. Mater. Sci, vol. 1, no. 1, pp. 61–107, Jan. 2000.

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape”, Journal of Applied Physics, vol. 86, no. 1, pp. 297–305, Jul. 1999 DOI:10.1063/1.370728

A. Atkinson, K. Pinardi, and S. C. Jain, “Stability of dislocations in epitaxially strained semiconductor stripe films”, Semiconductor Science and Technology, vol. 11, no. 9, pp. 1271–1275, Sep. 1996 DOI:10.1088/0268-1242/11/9/006

A. Atkinson, S. C. Jain, and A. H. Harker, “Strain, dislocations, and critical dimensions of laterally small lattice‐mismatched semiconductor layers”, Journal of Applied Physics, vol. 77, no. 5, pp. 1907–1913, Mar. 1995 DOI:10.1063/1.358822

A. Alizadeh, P. Sharma, S. Ganti, S. F. LeBoeuf, and L. Tsakalakos, “Templated wide band-gap nanostructures”, Journal of Applied Physics, vol. 95, no. 12, pp. 8199–8206, Jun. 2004 DOI:10.1063/1.1737477

A. Atkinson and S. C. Jain, “The energy of finite systems of misfit dislocations in epitaxial strained layers”, Journal of Applied Physics, vol. 72, no. 6, pp. 2242–2248, Sep. 1992 DOI:10.1063/1.351617

A. Y. Polyakov, “Nonpolar GaN grown on Si by hydride vapor phase epitaxy using anodized Al nanomask”, Applied Physics Letters, vol. 94, no. 2, p. 022114, Jan. 2009 DOI:10.1063/1.3072614

Y. S. Cho, “Reduction of stacking fault density in m-plane GaN grown on SiC”, Applied Physics Letters, vol. 93, no. 11, p. 111904, Sep. 2008 DOI:10.1063/1.2985816