Simulation of a field-effect transistor on nanofilaments
Main Article Content
Abstract
In article the analytical model of the silicon nanowire field effect transistor with Schottky source and drain barrier contacts is resulted. The Schottky diode model is based on the processes of thermionic field emission for reverse bias and thermionic emission mechanism for forward bias. The results of simulation and the analysis of current-voltage characteristics are presented.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
S. Fortuna, “GaAs MESFET With a High-Mobility Self-Assembled Planar Nanowire Channel”, IEEE Electron Device Letters, vol. 30, no. 6, pp. 593–595, Jun. 2009 DOI:10.1109/LED.2009.2019769
J. Wang, E. Polizzi, and M. Lundstrom, “A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation”, Journal of Applied Physics, vol. 96, no. 4, pp. 2192–2203, Aug. 2004 DOI:10.1063/1.1769089
D.S. Kim, Y.C. Jung, M.Y.Park, B.S.Kim, S.H.Hong, M.S. Choi, M.G.Kang, D.Whang, S.W. Hwang, “Electrical Characteristics of the Backgated Bottom-Up Silicon Nanowire FETs”, IEEE Transactions on Nanotechnology, vol. 7, no. 6, pp. 683–687, Nov. 2008 DOI:10.1109/TNANO.2008.2005636
Lee S.H., Yu Y.S., Hwang S.W., Ahn D. A, “A SPICE-Compatible New Silicon Nanowire Field-Effect Transistors (SNWFETs) Model”, IEEE Transactions on Nanotechnology, vol. 8, no. 5, pp. 643–649, Sep. 2009 DOI:10.1109/TNANO.2009.2019724
S. Zee, Physics of semiconductor devices:In 2 books, Mir., vol. 2. Moscow: Mir, 1984, p. 456.