Modified method of anisotropic ultrasonic filtering spectrum images
Main Article Content
Abstract
For the medical ultrasonic images processing with a speckle the method of filtration is improved and the proper algorithm of restoration is developed. Theoretical bases of anisotropic diffusion for the maintainance of shallow-vessel structures and the well-known approach for the noise erasing are combined. An additivemultiplicative model of speckle-noise is used.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
K. Niklas Nordström, “Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection”, Image and Vision Computing, vol. 8, no. 4, pp. 318–327, Nov. 1990. DOI:10.1016/0262-8856(90)80008-H
S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984. DOI:10.1109/TPAMI.1984.4767596
D. Mumford and J. Shah, “Boundary Detection by Minimizing Functionals, I”, in Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition, pp. 22–26.
L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259–268, Nov. 1992.DOI:10.1016/0167-2789(92)90242-F
J. Weickert, “Recursive separable schemes for nonlinear diffusion filters”, in Scale-Space Theory in Computer Vision, Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 260–271. DOI:10.1007/3-540-63167-4_56
J. Weickert, Anisotropic Diffusion in imageprocessing, Stuttgart: Teubner-Verlag, 1998.
K. Krissian, “A new variational image restoration applied to 3D angiographies”, in Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, BC, Canada, 2001, pp. 65–72. DOI:10.1109/VLSM.2001.938883