Модифицированный метод анизотропной фильтрации ультразвуковых изображений со спектром

##plugins.themes.bootstrap3.article.main##

П.Г. Молюков
О.В. Борисов
В.О. Фесечко
Е.В. Хитрык

Аннотация

Для обработки медицинских ультразвуковых изображений со спеклом усовершенствован метод фильтрации и получен соответствующий алгоритм реставрации. Соединены теоретические основы анизотропной диффузии для сохранения мелкососудистых структур и известный подход к обешумеванию акустических изображений. Использовали аддитивно-мультипликативную модель спекл-шума

##plugins.themes.bootstrap3.article.details##

Как цитировать
Молюков, П. ., Борисов, О., Фесечко, В. ., & Хитрык, Е. (2010). Модифицированный метод анизотропной фильтрации ультразвуковых изображений со спектром. Электроника и Связь, 15(5), 79–82. https://doi.org/10.20535/2312-1807.2010.58.5.284794
Раздел
методы и средства обработки сигналов и изображений

Библиографические ссылки

K. Niklas Nordström, “Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection”, Image and Vision Computing, vol. 8, no. 4, pp. 318–327, Nov. 1990. DOI:10.1016/0262-8856(90)80008-H

S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984. DOI:10.1109/TPAMI.1984.4767596

D. Mumford and J. Shah, “Boundary Detection by Minimizing Functionals, I”, in Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition, pp. 22–26.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259–268, Nov. 1992.DOI:10.1016/0167-2789(92)90242-F

J. Weickert, “Recursive separable schemes for nonlinear diffusion filters”, in Scale-Space Theory in Computer Vision, Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 260–271. DOI:10.1007/3-540-63167-4_56

J. Weickert, Anisotropic Diffusion in imageprocessing, Stuttgart: Teubner-Verlag, 1998.

K. Krissian, “A new variational image restoration applied to 3D angiographies”, in Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, BC, Canada, 2001, pp. 65–72. DOI:10.1109/VLSM.2001.938883