Study of regions of non-negativity of orthogonal representations probability density

Main Article Content

V.S. Berehun
O.I. Krasylnikov

Abstract

Mathematical modelling determines areas for cumulant coefficients of random variables at which orthogonal representation of their probability density functions in series after Hermite and Laguerre polynoms will be non-negative

Article Details

How to Cite
Berehun, V. ., & Krasylnikov, O. . (2010). Study of regions of non-negativity of orthogonal representations probability density. Electronics and Communications, 15(3), 73–78. https://doi.org/10.20535/2312-1807.2010.15.3.306097
Section
Theory of signals and systems

References

A.N. Malakhov, Cumulant analysis of random non-Gaussian processes and their transformations, Moscow: Soviet Radio, 1978, p. 376.

A.A. Sveshnikov, Applied theory methods random functions, Moscow: Nauka, 1968, p. 464.

M. Kendall, A. Stewart, and A. N. Kolmogorov, Theory of distributions: Transl. from English, Moscow: Nauka, 1966, p. 588.

Y.V. Fomin and G.R. Statistically Chinese theory of pattern recognition, Tarlovsky, Moscow: Soviet radio, 1980, p. 264.

G. Kramer and A. N. Kolmogorov, Mathematical methods of statistics sticks, Moscow: Mir, 1975, p. 684.

E. Jondeau and M. Rockinger, “Gram–Charlier densities”, Journal of Economic Dynamics and Control, vol. 25, no. 10, pp. 1457–1483, Oct. 2001 DOI:10.1016/S0165-1889(99)00082-2

A.K. Mitropolsky, Techniques of statistical calculations, Moscow: State. publishing house of physics and mathematics literature, 1971, p. 576.

V.I. Tikhonov, Statistical radio engineering, Moscow: Radio and communication, 1982, p. 624.

G. Khan, S. Shapiro, and V. V. Nalimova, Statistical models in engineering problems, Moscow: Mir, 1969, p. 396.

R. Dech and B. R. Levina, Nonlinear transformations of random processes, Moscow: Soviet Radio, 1965, p. 208.

P.K. Suetin, Classic orthogonal polynomials, Moscow: Fizmatlit, 2005, p. 480.