Investigation of electrical brain activity related to movement: a review

Main Article Content

Anton Vavreshchuk

Abstract

The work is devoted to consideration of different problems which arise in studying of the movement-related brain activity. Changes in the cortex activity during performing of the movement both real and imagery represent neural networks formed for planning and performing of the particular motion.

The review of possible preprocessing methods of the registered brain activity for increasing significance of extracted features are shown. Regularities and patterns which take place before and after movement onset are described. The methods that suitable for connectivity estimations in case of cortico-muscular relationships and in case of evaluations between brain regions are shown.  In addition, possibility of movement classification and prediction together with reconstruction of kinematics features of the motion are considered. 

Article Details

How to Cite
Vavreshchuk, A. (2016). Investigation of electrical brain activity related to movement: a review. Electronics and Communications, 21(3), 62–69. https://doi.org/10.20535/2312-1807.2016.21.3.69578
Section
Biomedical devices and systems

References

Ball T., Schulze-Bonhage A., Aertsen A., Mehring C., (2009), “Differential representation of arm movement direction in relation to cortical anatomy and function”. Journal of Neural Engineering, 6.

Bashar S.K., Hassan A.R., Bhuiyan M.I.H., (2015), “Identification of Motor Imagery Movements from EEG Signals Using Dual Tree Complex Wavelet Transform”. Advances in Computing, Communications and Informatics (ICACCI), 2015: Precedings. Pp. 290-296.

Brown P., (2000), “Cortical drives to human muscle: the Piper and related rhythms”. Progress in Neurobiology Vol.60. Pp. 97-108.

Gross J., Tass P.A., Salenius S., Hari R., Freund H.-J., Schnitzler A., (2000), “Corticomuscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography”. Journal of Physiology, 527.3. Pp. 623—631.

Gu Y., do Nascimento O., Lucas M.-F., Farina D., (2009), “Identification of task parameters from movement-related cortical potentials”. Med Biol Eng Comput, 47. Pp. 1257-1264.

Houweling S., van Dijk B.W., Beek P.J., Daffershofer A., (2010), “Cortico-spinal synchronization reflects changes in performance when learning a complex bimanual task”. NeuroImage, 49. Pp. 3269–3275.

Jerbi K., Lachaux J.-P., N’Diaye K., Pantazis D., Leahy R.M., Garnero L., Baillet S., (2007), “Coherent neural representation of hand speed in humans revealed by MEG imaging”. PNAS, vol.104, no.18. Pp.7676-7681.

Jochumsen M., Niazi I., Mrachacz-Kersting N., Farina D., Dremstrup K., (2013), “Detection and classification of movement-related cortical potentials associated with task force and speed”. Journal of Neural Engineering, 10.

Kukke S., de Campos A., Damiano D., Alter K., Patronas N., Hallet M., (2015), “Cortical activation and inter-hemispheric sensorimotor coherence in individuals with arm dystonia due to childhood stroke”. Clinical Neurophysiology, 126. Pp. 1589-1598.

Kukleta M., Bob P., Turak B., Louvel J., (2015), “Large-scale synchronization related to structures manifesting simultaneous EEG baseline shifts in the pre-movement period”. ANS: Journal for Neurocognitive Research, 67. Pp. 101-109.

Long J., Tazoe T., Soteropoulos D., Perez M., (2015), “Interhemispheric connectivity during bimanual isometric force generation”. Journal of Neurophysiology, 115. Pp. 1196-1207.

Lopez-Larraz E., Montesano L., Gil-Agudo A., Minguez J., (2014), “Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates”. Journal of neuroengineering and rehabilitation, 11:153.

Lucci G., Berhicci M., Spinelli D., Di Russo F., (2014), “The motor preparation of directionally incompatible movements”. NeuroImage, 91. Pp. 33-42.

Lv J., Li Y., Gu Z., (2010), “Decoding hand movement velocity from electroencephalogram signals during a drawing task”. BioMedical Engineering OnLine, 9:64.

McClelland V., Cvetkovic Z., Mills K., (2012), “Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence”. Journal of Neuroscience Methods, 205. Pp. 190-201.

Mehrkanoon S., Breakspear M., Boonstra T.W., (2014), “The reorganization of corticomuscular coherence during a transition between sensorimotor states”. NeuroImage, 100. Pp. 692–702.

Mima T., Halett M., (1999), “Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism”. Clinical Neurophysiology, 110. Pp. 1892-1899.

Mima T., Matsuoka T., Halett M., (2001), “Information flow from the sensorimotor cortex to muscle in humans”. Clinical Neurophysiology, 112. Pp. 122-126.

Myers L.J., Lowery M., O’Malley M., Vaughan C.L., Heneghan C., St Clair Gibson A., Harley Y.X.R., Sreenivasan R., (2003), “Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis”. Journal of Neuroscience Methods, 124. Pp. 157-165.

Niemeier M., Schierup A., Van D.T., Zhang X., (2011), “MRCP-based brain-computer interface system for stroke rehabilitation”. Biomedical Engineering and Informatics.

Ohara S., Mima T., Baba K., Ikeda A., Kunieda T., ..., Shibasaki H., (2001) , “Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements”. The Journal of Neuroscience, 21(23). Pp. 9377-9386.

Pistohl T., Ball T., Schulze-Bonhage A., Aertsen A., Mehring C., (2008), “Prediction of arm movement trajectories from ECoG-recordings in humans”. Journal of Neuroscience Methods, 167. Pp. 105-114.

Ramoser H., Müller-Gerking J., Pfurtscheller G., (2000), “Optimal spatial filtering of single trial EEG during imagined hand movement”. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 4. Pp. 441-446.

Riaz F., Hassan A., Rehman S., Niazi I., Jochumsen M., Dremstrup K., (2014), “Processing Movement Related Cortical Potentials in EEG Signals for Identification of Slow and Fast Movements”. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Precedings. Pp. 4908-4911.

Von Carlowitz-Ghori K., Bayraktaroglu Z., Hohlefeld F., Losch F., Curio G., Nikulin V., (2014), “Corticomuscular coherence in acute and chronic stroke”. Clinical Neurophysiology, 125. Pp. 1182–1191.

Yu X., Chum P., Sim K.-B., (2013), “Analysis the effect of PCA for feature reduction in non-stationary EEGbased motor imagery of BCI system”. Optik, 125. Pp. 1498-1502.

Yuan H., Perdoni C., He B., (2010), “Relationship between speed and EEG activity during imagined and executed hand movements”. Journal of Neural Engineering, 7.