Исследование электрической активности мозга, связанной с движениями: обзор
##plugins.themes.bootstrap3.article.main##
Аннотация
Работа посвящена рассмотрению проблем, возникающих при изучении деятельности мозга, связанной с движениями. Изменения в коре головного мозга во время выполнения движения, а также его представления, отображают нейронные сети, сформированные для планирования и реализации конкретного движения.
Приведен обзор методов первичной обработки зарегистрированной активности головного мозга, которые могут быть использованы для повышения значимости выделенных признаков. Описаны закономерности, которые имеют место до начала движения и после него. Представлены методы, подходящие для оценки связи как между активностью мозга и активностью мышц, так и между активностью областей головного мозга. Кроме того, рассмотрена возможность классификации и прогнозирования движений вместе с реконструкцией кинематических свойств.
##plugins.themes.bootstrap3.article.details##
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующими условиями:- Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале.
- Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи (см. The Effect of Open Access).
Библиографические ссылки
Ball T., Schulze-Bonhage A., Aertsen A., Mehring C., (2009), “Differential representation of arm movement direction in relation to cortical anatomy and function”. Journal of Neural Engineering, 6.
Bashar S.K., Hassan A.R., Bhuiyan M.I.H., (2015), “Identification of Motor Imagery Movements from EEG Signals Using Dual Tree Complex Wavelet Transform”. Advances in Computing, Communications and Informatics (ICACCI), 2015: Precedings. Pp. 290-296.
Brown P., (2000), “Cortical drives to human muscle: the Piper and related rhythms”. Progress in Neurobiology Vol.60. Pp. 97-108.
Gross J., Tass P.A., Salenius S., Hari R., Freund H.-J., Schnitzler A., (2000), “Corticomuscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography”. Journal of Physiology, 527.3. Pp. 623—631.
Gu Y., do Nascimento O., Lucas M.-F., Farina D., (2009), “Identification of task parameters from movement-related cortical potentials”. Med Biol Eng Comput, 47. Pp. 1257-1264.
Houweling S., van Dijk B.W., Beek P.J., Daffershofer A., (2010), “Cortico-spinal synchronization reflects changes in performance when learning a complex bimanual task”. NeuroImage, 49. Pp. 3269–3275.
Jerbi K., Lachaux J.-P., N’Diaye K., Pantazis D., Leahy R.M., Garnero L., Baillet S., (2007), “Coherent neural representation of hand speed in humans revealed by MEG imaging”. PNAS, vol.104, no.18. Pp.7676-7681.
Jochumsen M., Niazi I., Mrachacz-Kersting N., Farina D., Dremstrup K., (2013), “Detection and classification of movement-related cortical potentials associated with task force and speed”. Journal of Neural Engineering, 10.
Kukke S., de Campos A., Damiano D., Alter K., Patronas N., Hallet M., (2015), “Cortical activation and inter-hemispheric sensorimotor coherence in individuals with arm dystonia due to childhood stroke”. Clinical Neurophysiology, 126. Pp. 1589-1598.
Kukleta M., Bob P., Turak B., Louvel J., (2015), “Large-scale synchronization related to structures manifesting simultaneous EEG baseline shifts in the pre-movement period”. ANS: Journal for Neurocognitive Research, 67. Pp. 101-109.
Long J., Tazoe T., Soteropoulos D., Perez M., (2015), “Interhemispheric connectivity during bimanual isometric force generation”. Journal of Neurophysiology, 115. Pp. 1196-1207.
Lopez-Larraz E., Montesano L., Gil-Agudo A., Minguez J., (2014), “Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates”. Journal of neuroengineering and rehabilitation, 11:153.
Lucci G., Berhicci M., Spinelli D., Di Russo F., (2014), “The motor preparation of directionally incompatible movements”. NeuroImage, 91. Pp. 33-42.
Lv J., Li Y., Gu Z., (2010), “Decoding hand movement velocity from electroencephalogram signals during a drawing task”. BioMedical Engineering OnLine, 9:64.
McClelland V., Cvetkovic Z., Mills K., (2012), “Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence”. Journal of Neuroscience Methods, 205. Pp. 190-201.
Mehrkanoon S., Breakspear M., Boonstra T.W., (2014), “The reorganization of corticomuscular coherence during a transition between sensorimotor states”. NeuroImage, 100. Pp. 692–702.
Mima T., Halett M., (1999), “Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism”. Clinical Neurophysiology, 110. Pp. 1892-1899.
Mima T., Matsuoka T., Halett M., (2001), “Information flow from the sensorimotor cortex to muscle in humans”. Clinical Neurophysiology, 112. Pp. 122-126.
Myers L.J., Lowery M., O’Malley M., Vaughan C.L., Heneghan C., St Clair Gibson A., Harley Y.X.R., Sreenivasan R., (2003), “Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis”. Journal of Neuroscience Methods, 124. Pp. 157-165.
Niemeier M., Schierup A., Van D.T., Zhang X., (2011), “MRCP-based brain-computer interface system for stroke rehabilitation”. Biomedical Engineering and Informatics.
Ohara S., Mima T., Baba K., Ikeda A., Kunieda T., ..., Shibasaki H., (2001) , “Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements”. The Journal of Neuroscience, 21(23). Pp. 9377-9386.
Pistohl T., Ball T., Schulze-Bonhage A., Aertsen A., Mehring C., (2008), “Prediction of arm movement trajectories from ECoG-recordings in humans”. Journal of Neuroscience Methods, 167. Pp. 105-114.
Ramoser H., Müller-Gerking J., Pfurtscheller G., (2000), “Optimal spatial filtering of single trial EEG during imagined hand movement”. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 8, NO. 4. Pp. 441-446.
Riaz F., Hassan A., Rehman S., Niazi I., Jochumsen M., Dremstrup K., (2014), “Processing Movement Related Cortical Potentials in EEG Signals for Identification of Slow and Fast Movements”. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Precedings. Pp. 4908-4911.
Von Carlowitz-Ghori K., Bayraktaroglu Z., Hohlefeld F., Losch F., Curio G., Nikulin V., (2014), “Corticomuscular coherence in acute and chronic stroke”. Clinical Neurophysiology, 125. Pp. 1182–1191.
Yu X., Chum P., Sim K.-B., (2013), “Analysis the effect of PCA for feature reduction in non-stationary EEGbased motor imagery of BCI system”. Optik, 125. Pp. 1498-1502.
Yuan H., Perdoni C., He B., (2010), “Relationship between speed and EEG activity during imagined and executed hand movements”. Journal of Neural Engineering, 7.