Mathematical model of intersites aspect of space crystal lattice

Main Article Content

Ганна Вікторівна Шевлякова
Л. М. Королевич
Олександр Васильович Борисов

Abstract

The paper deals with the problems of mathematical invariance of intersites aspect of the crystal lattice. With the introduction of the concept of crystal-spherical coordinate system and the modified Hessian normal form mathematically proved the invariance of the description of the crystal lattice in the intersites aspect, which is generalized to all space Fedorov groups.

Reference 6, figures 2, tables 2.

Article Details

How to Cite
Шевлякова, Г. В., Королевич, Л. М., & Борисов, О. В. (2016). Mathematical model of intersites aspect of space crystal lattice. Electronics and Communications, 20(5), 6–14. https://doi.org/10.20535/2312-1807.2015.20.5.69923
Section
Solid-state electronics

References

Ahn, C. H., Senthil, K., Cho. H. K., & Lee, S. Y. (2013). Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors. Scientific Reports,3, 1-4.

Hahn, Th. (2005). International tables ror crystallography (5th ed., Vol. A). Springer.

Bokij. G. B. (1960). Kristallohimiya [Crystallochemistry] (2nd ed). Moskva: Izdatel'stvo Moskovskogo universiteta [in Russian]

Delone, B. N., & Rajkov, D. A. (1949). Analiticheskaya geometriya [Analytical Geometry] (Vol 2). Moskva-Leningrad: GITTL. (Rus.)

Korolevich, L. N., Borisov, A. V., & Rodionov, M. K. (2011). Mezhuzlovoy aspekt kristallicheskoy reshetki [Intersites aspect of the crystal lattice]. Elektronika i svyaz. Tematicheskij vypusk "Elektronika i nanotehnologii" (4(63)), P. 32-38. (Rus.)

Sirotin, Ju. I., & Shaskol'skaja, M. P. (1979). Osnovy kristallofiziki [Fundamentals of crystallophysics] (2nd ed). Moskva: Glavnaja redakcija fiziko-matematicheskoj literatury "Nauka" (Rus.)