Аналіз підсилення квантових каскадних лазерів
Основний зміст сторінки статті
Анотація
У статті наведено результати моделювання характеристик квантового каскадного лазера у терагерцовому діапазоні частот. На основі розробленої моделі розраховані частоти генерації і амплітудно-частотні характеристики двох перспективних надрешіткових лазерних структур. Показана можливість оптимізації структур і характеристик квантових каскадних лазерів шляхом вибору геометричних і електричних параметрів.
Бібл. 9, рис. 4.
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
Kazarinov, R. F., Suris, R. A. (1972). Injection heterojunction laser with a diffraction grating on its con-tact surface. Sov. Phys. Semicond. Vol. 6. Pp. 1359-1365.
Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L. and Cho, A. Y. (1994). Quantum Cas-cade Laser. Science.Vol. 264. No.5158. Pp. 553-556
Faist, J., Capasso, F., Sirtori, C. (1995).Vertical transition quantum cascade laser with Bragg confined excited state. Appl. Phys. Lett. Vol. 66. No. 5. Pp. 538.
Gmachl, C., Capasso, F., Sivco, D. L. and Cho, A. Y. (2001). Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. Vol. 64, No. 11. Pp. 1533 - 1601.
Giorgetta, F. R., Baumann, E., Hofstetter, D., Manz, C., Yang, Q., Kohler, K., and Graf, M. (2007). In-GaAs/AlAsSb quantum cascade detectors operating in the near infrared. Appl. Phys. Lett. Vol. 91. No. 11. Pp. 111-115.
Rostami, A., Rasooli, H., Baghban, H. (2011). Terahertz Technology. Fundamentals and Applications. Springer. New York. Pp. 2 – 16.
Rossi, F. (2011). Theory of Semiconductor Quantum Devices. Microscopic Modeling and Simulation Strategies. Springer. New York. Pp 167-211
Zasavitsky, I. I. (2012). Schemes of the active region in quantum cascade lasers. Quantum Electron-ics. Moscow. Vol. 42. No. 10. Pp. 863
Malyshev, K. V. (2013). Terahertz laser AlGaAs-quasiperiodic superlattices. Quantum Electronics. Moscow. Vol. 43. No. 6. Pp. 503-508.
Wittmann, A. (2009). High-performance quantum cascade laser sources for spectroscopic applica-tions. M.Sc., Technische Universitдt Mьnchen. Pp. 55
Plog, K. Chenk, L. (1989). Molecular beam epitaxy heterostructures and. Moscow: Mir, P. 600.
Zasavitsky, I. I., Pashkeev, D. A., Marmalyuk, A. A., Ryaboshtan,J. L., Mikaelyan, G. T. (2010). Quan-tum cascade laser obtained MOCVD. Quantum Electronics. Moscow. Vol. 40. No. 2. Pp. 95-99
Mamutin, V. V., Ustinov, V. M., Boetthcher, J., Kuenzel, H. (2010). Growing molecular - beam epitaxy and characterization of the quantum cascade laser at a wavelength of 5 microns. Semiconductors. Vol. 44. No. 7. Pp. 995-1001.