Control of Optical Clearing of Human Skin by Ellipsoidal Reflector Method
Main Article Content
Abstract
Current research deals with the problem of optical clearing during photometry by ellipsoidal reflectors. The specific problem is optical clearing of human skin, specifically the level control tasks during non-invasive conditions of experiment. In silico experiment involve Monte Carlo simulation of light propagation in multi-layered biological tissue and ellipsoidal reflector. The research was made for the set of human skin layers optical properties and their anatomic thicknesses. There were received photometric images in back scattered light for human skin from following parts of body: palm (hand), chest, abdomen, shoulder, back and thigh. Based on the zone analysis there were received illuminance dependencies of middle and external rings of photometric images from the optical clearing time. In addition, there was investigated the influence of optical clearing time on the character of light scattering on human skin from different parts of human body.
Ref. 45, fig. 5, tabl. 2.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
A. V. Belikov and A. V. Skripnik, Lazernyie biomeditsinskie tehnologii [Laser Biomedical Technologies (Part 2)]. SP: ITMO, 2009.
H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface, vol. 5, no. 24, pp. 671–690, 2008. DOI: 10.1098/rsif.2008.0052
M. W. Berns, Y. Tadir, H. Liang, and B. Tromberg, “05 Laser Scissors and Tweezers,” in Methods in Cell Biology, 1997, pp. 71–98. DOI: 10.1016/s0091-679x(08)60403-3
E. A. Shahno, Fizicheskie osnovy primenenija lazerov v medicine [The physical basis for the use lasers in medicine]. SPb: NIU ITMO, 2012.
A. V. Geynits and S. V. Moskvin, Lazernaya terapiya v kosmetologii i dermatologii [Laser therapy in cosmetology and dermatology]. M.-T.: Triada, 2010.
V. F. Barybin and D. A. Rogatkin, “Neinvazivnaya lazernaya diagnostika - meditsinskaya tehnologiya XXI veka [Non-invasive laser diagnostics - medical technology of the XXI century],” Alm. Clin. Med., vol. 1, pp. 69–81, 1998.
I. A. Novikov, Y. O. Grusha, and N. P. Kiryushchenkova, “Povyishenie effektivnosti fluorestsentnoy diagnostiki novoobrazovaniy kozhi i slizistyih obolochek v oftalmoonkologii [Improving Efficacy of Fluorescent Diagnostics of Skin and Mucosal Tumors in Ocular Oncology],” Ann. Russ. Acad. Med. Sci., vol. 10, pp. 62–69, 2012. DOI: 10.15690/vramn.v67i10.418
N. V. Bezuglaya, M. A. Bezuglyi, G. S. Tymchik, and K. P. Vonsevych, “Vplyv osʹovoji anizotropiji rozsijannja biolohičnyx seredovyšč na točnistʹ vyznačennja optyčnyx koeficijentiv metodom Monte-Karlo [The Influence of the Axial Anisotropy of Scattering Biological Media on the Accuracy of Determination the Optical Coefficien,” Bull. NTUU “KPI”. Ser. Instrum. Mak., vol. 99, no. 1, pp. 85–90, 2015.
N. V Bezuglaya and М. А. Bezuglyi, “Spatial photometry of scattered radiation by biological objects,” in SPIE, 2013, vol. 9032, pp. 1–5. DOI: 10.1117/12.2044609
S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol., vol. 58, no. 14, pp. 5007–5008, 2013. DOI: 10.1088/0031-9155/58/11/r37
N. V. Bezuglaya, M. A. Bezuglyi, and G. S. Tymchik, “Osoblyvosti anizotropiji svitlorozsijannja voloknystymy biolohičnymy tkanynam [Features of anisotropy of light scattering on fibrous biological tissues],” Bull. NTUU “KPI”. Ser. Instrum. Mak., vol. 50, no. 2, pp. 169–175, 2015.
A. J. McLean, “Light in biology and medicine, vol. I,” J. Photochem. Photobiol. B Biol., vol. 4, no. 1, pp. 129–130, 1989. DOI: 10.1007/978-1-4613-0709-9_6
J. S. Al-Bahri and N. M. Spyrou, “Photon linear attenuation coefficients and water content of normal and pathological breast tissues,” Appl. Radiat. Isot., vol. 47, no. 8, pp. 777–784, 1996. DOI: 10.1016/0969-8043(96)00066-8
T. K. L. L. Tchvialeva, H. Zeng, I. Markhvida, D. I. McLean, H. Lui, “Skin Roughness Assessment,” in Biomedical Engineering, D. Campolo, Ed. IntechOpen, 2010, pp. 341–358. DOI: 10.5772/154, ISBN: 978-953-7619-57-2
M. Sun, C. Zhang, Z. Hao, and J. Tian, “Effect of surface roughness on determination of tissue optical properties obtained by diffusion approximation,” Appl. Opt., vol. 46, no. 17, p. 3649, 2007. DOI: 10.1364/ao.46.003649
H. Jelinkova, Lasers for medical applications: Diagnostics, therapy and surgery. Cembridge: Woodhead Publishing Limited, 2013. ISBN: 9780857092373
M. Bezuglyi, N. Bezuglaya, and S. Kostuk, “Influence of laser beam profile on light scattering by human skin during photometry by ellipsoidal reflectors,” Devices Methods Meas., vol. 9, no. 1, pp. 56–65, 2018. DOI: 10.21122/2220-9506-2018-9-1-56-65
C. Ash, M. Dubec, K. Donne, and T. Bashford, “Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods,” Lasers Med. Sci., vol. 32, no. 8, pp. 1909–1918, 2017. DOI: 10.1007/s10103-017-2317-4
A. N. Bashkatov, E. A. Genina, and V. V Tuchin, “Opticheskoye prosvetleniye biologicheskikh tkaney - perspektivy primeneniya v meditsinskoy diagnostike i fototerapii [Optical clearing of biological tissues - prospects for application in medical diagnostics and phototherapy],” Alm. Clin. Med., pp. 39–42, 2008.
A. N. Bashkatov, “Upravleniye opticheskimi svoystvami biotkaney pri vozdeystvii na nikh osmoticheski aktivnymi immersionnymi zhidkostyami [Control of tissue optical properties by means of osmotically active immersion liquids, Ph. D. thesis],” Saratov State University, 2002.
K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion,” IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 3, pp. 1244–1259, 2012. DOI: 10.1109/JSTQE.2011.2181991
C. Chang et al., “Optical Clearing of Vaginal Tissues in Cadavers,” in SPIE Int Soc Opt Eng., 2018, p. 10468. DOI: 10.1109/jstqe.2011.2181991
Y.-J. Zhao et al., “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light Sci. Appl., vol. 7, no. 2, p. 17153, 2018. DOI: 10.1038/lsa.2017.153
A. Y. Sdobnov, J. Lademann, M. E. Darvin, and V. V Tuchin, “Methods for Optical Skin Clearing in Molecular Optical Imaging in Dermatology,” Biochemistry, vol. 84, pp. 144–158, 2019. DOI: 10.1134/S0006297919140098. PMID: 31213200
E. C. Costa, A. F. Moreira, E. C. Costa, A. F. Moreira, D. De Melo-diogo, and I. J. Correia, “Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy,” J. Biomed. Opt., vol. 23, no. 05, p. 1, 2018. DOI: 10.1117/1.JBO.23.5.055003
T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt., vol. 16, no. 9, p. 095002, 2011. DOI: 10.1117/1.3621515
J. M. Hirshburg, K. M. Ravikumar, W. Hwang, and A. T. Yeh, “Molecular basis for optical clearing of collagenous tissues,” J. Biomed. Opt., vol. 15, no. 5, p. 055002, 2010. DOI: 10.1117/1.3484748
A. V. Svirin, Y. I. Kiiko, B. V. Obruch, and A. V. Bogomolov, “Spektralnaya opticheskaya kogerentnaya tomografiya: printsipyi i vozmozhnosti metoda [Spectral optic coherent tomography: principles and possibilities (Literary review)],” RMJ «Clinical Ophthalmol., no. 2, p. 50, 2009.
X. Xu, L. Yu, and Z. Chen, “Optical clearing of flowing blood using dextrans with spectral domain optical coherence tomography,” J. Biomed. Opt., vol. 13, no. 2, p. 021107, 2008. DOI: 10.1117/1.2909673
K. Palikaras and N. Tavernarakis, “Multiphoton Fluorescence Light Microscopy,” in Encyclopedia of life science, John Wiley & Sons, 2012. DOI: 10.1002/9780470015902.a0002991.pub3
K. Svoboda, R. Yasuda, and N. Carolina, “Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience,” Neuron, vol. 50, pp. 823–839, 2006. DOI: 10.1016/j.neuron.2006.05.019
G. S. Bumbrah and R. M. Sharma, “Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse,” Egypt. J. Forensic Sci., vol. 6, no. 3, pp. 209–215, 2016. DOI: 10.1016/j.ejfs.2015.06.001
W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Chem Soc Rev Stimulated Raman scattering microscopy : an emerging tool for drug discovery,” Chem. Soc. Rev., 2016. DOI: 10.1039/c5cs00693g
D. A. Peterson, “Confocal Microscopy,” in Encyclopedia of Movement Disorders, K. Kompoliti and L. V. Metman, Eds. Reference Work, 2010, pp. 250–252. DOI: 10.1016/B978-0-12-374105-9.00230-6
L. Majlof and P. Forsgren, Confocal Microscopy : Important Considerations for Accurate Imaging, vol. 70. Elsevier Masson SAS, 1993. DOI: 10.1016/S0091-679X(02)70005-8
M. Bezuglyi, N. Bezuglaya, O. Kuprii, and I. Yakovenko, “The non-invasive optical glucometer prototype with ellipsoidal reflectors,” in IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) The, 2018, pp. 0–4. DOI: 10.1109/RTUCON.2018.8659864
М. A. Bezuglyi, N. V. Bezuglaya, and A. B. Samilyak, “Obrabotka izobrazheniy pri ellipsoidalnoy fotometrii [Image processing at ellipsoidal photometry,” Devices Methods Meas., vol. 7, no. 1, pp. 67–76, 2016. DOI: 10.21122/2220-9506-2016-7-1-67-76
М. A. Bezuglyi, N. V. Bezuglaya, and I. V. Helich, “Ray tracing in ellipsoidal reflectors for optical biometry of media,” Appl. Opt., vol. 56, no. 30, pp. 8520–8526, 2017. DOI: 10.1364/AO.56.008520
M. A. Bezuglyi, N. V. Bezuglaya, A. V. Ventsuryk, and K. P. Vonsevych, “Angular Photometry of Biological Tissue by Ellipsoidal Reflector Method,” Devices Methods Meas., vol. 10, no. 2, pp. 160–168, 2019. DOI: 10.21122/2220-9506-2019-10-2-160-168
M. A. Bezuglyi, A. V Yarych, and D. V Botvinovskii, “On the Possibility of Applying a Mirror Ellipsoid of Revolution to Determining Optical Properties of Biological Tissues,” Opt. Spectrosc., vol. 113, no. 1, pp. 104–110, 2012. DOI: 10.1134/S0030400X12070053
N. V. Bezuglaya, М. A. Bezuglyi, and Y. V. Chmyr, “Prostorova potokova biometrija seredovyšč elipsojidalʹnymy reflektoramy [Spatial fluxing biometry of environments by ellipsoidal reflectors],” ElectronComm 2014, vol. 19, no. 6(83), pp. 87–93, 2014. DOI: 10.20535/2312-1807.2014.19.6.113592
G. Vargas, E. K. Chan, J. K. Barton, H. G. R. Iii, and A. J. Welch, “Use of an Agent to Reduce Scattering in Skin,” Lasers Surg. Med., vol. 24, pp. 133–141, 1999. DOI: 10.1002/(SICI)1096-9101(1999)24:23.0.CO;2-X
D. K. Tuchina, V. D. Genin, A. N. Bashkatov, E. A. Genina, and V. V Tuchin, “Optical Clearing of Skin Tissue ex vivo with Polyethylene Glycol,” Opt. Spectrosc., vol. 120, no. 1, pp. 36–45, 2016. DOI: 10.1134/S0030400X16010215
E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, and V. V Tuchin, “Optical Clearing of Skin under Action of Glycerol : Ex Vivo and In Vivo Investigations,” Opt. Spectrosc., vol. 109, no. 2, pp. 225–231, 2010. DOI: 10.1134/S0030400X10080126
Y. Yeliseyev, Zabolevaniya kozhi. Polnyy meditsinskiy spravochnik dlya vsey semi [Skin diseases: A complete medical reference book for the whole family]. Moscow: Eksmo Publ, 2009.



