Застосування нейронних мереж для вирішення завдання генерації музики

Основний зміст сторінки статті

Yaroslav Yuriiovych Dorogyi
https://orcid.org/0000-0003-3848-9852
Vasyl Vasylovych Tsurkan
https://orcid.org/0000-0003-1352-042X
Kyryl D Beldiaha
https://orcid.org/0000-0002-6456-6981

Анотація

В статті розглядається можливість використання нейронних мереж як основи генератора музики. Під генерацією музики розуміють процес створення послідовностей музичних нот, що відносить дане завдання до задач моделювання послідовностей, як і моделювання мови. Актуальність розвитку даної теми пов’язана з необхідністю написання нової музики та знаходження нових мотивів, що спричинено виробництвом великої кількості фільмів та потребами людей. Основною вимогою до системи була генерація поліфонічної музики, що є послідовністю кортежів нот, тобто багаторозмірним об’єктом, що потребує використання породжувальних моделей, які здатні обчислювати ймовірнісний розподіл по відношенню до рекурентних моделей, які, в свою чергу, дають змогу відтворити довгострокові залежності в послідовності багаторозмірних об’єктів. Для цього в статті наведено необхідні теоретичні відомості. Розглянуто існуючі рішення і визначено їх переваги та недоліки. Проаналізовано та представлено варіанти можливих топологій, алгоритми їх тренування та генерації. Описано результати експериментальних досліджень, на підставі яких виконано порівняння та визначено переваги та недоліки кожної з них.

Бібл. 11, рис. 8, табл. 1.

Блок інформації про статтю

Як цитувати
[1]
Y. Y. Dorogyi, V. V. Tsurkan, і K. D. Beldiaha, «Застосування нейронних мереж для вирішення завдання генерації музики», Мікросист., Електрон. та Акуст., т. 23, вип. 4, с. 42–50, Сер 2018.
Розділ
Електронні системи та сигнали
Біографії авторів

Yaroslav Yuriiovych Dorogyi, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Доцент кафедри АУТС "КПІ ім. Ігоря Сікорського"

Vasyl Vasylovych Tsurkan, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Доцент кафедри ПСКЗ "КПІ ім. Ігоря Сікорського"

Kyryl D Beldiaha, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Магістр кафедри АУТС "КПІ ім. Ігоря Сікорського"

Посилання

E. Douglas, “Make Music and Art Using Machine Learning,” Magenta, 2016. [Online]. Available: https://magenta.tensorflow.org/.

A. van den Oord, S. Dieleman, and H. Zen, “WaveNet: A Generative Model for Raw Audio,” DeepMind, 2016. [Online]. Available: https://deepmind.com/blog/wavenet-generative-model-raw-audio/.

D. Johnson, “Composing Music With Recurrent Neural Networks · hexahedria,” hexahedria, 2015. [Online]. Available: http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/.

I. Goodfellow, Y. Bengio, and A. Courville, “Sequence Modeling: Recurrent and Recursive Nets,” in Deep Learning, MIT Press, 2016, pp. 367–415, URL: http://www.deeplearningbook.org/contents/rnn.html.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies,” 1991, URL: http://www.bioinf.jku.at/publications/older/ch7.pdf.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, DOI: 10.1162/neco.1997.9.8.1735.

Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent Neural Networks for Sequence Learning,” 2015, arXiv: 1506.00019.

G. (LISA lab. . Hinton, “Restricted Boltzmann Machines (RBM),” DeepLearning 0.1 documentation, 2010. [Online]. Available: http://deeplearning.net/tutorial/rbm.html.

G. Hinton, “Deep Belief Nets,” Toronto, 2007, URL: https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf.

N. Boulanger-Lewandowski, “Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks,” Universit_e de Montr_eal, 2014. URL: http://www-etud.iro.umontreal.ca/~boulanni/NicolasBoulangerLewandowski_thesis.pdf

J. Allwright, “ABC version of the Nottingham Music Database,” 2003. [Online]. Available: http://abc.sourceforge.net/NMD/.