Перелаштовувана копланарна лінія

Основний зміст сторінки статті

Artem Serhiyovych Chernov
https://orcid.org/0000-0002-5669-9223
Iryna Petrivna Golubeva
https://orcid.org/0000-0002-4801-006X
Victor Anatoliyovych Kazmirenko
https://orcid.org/0000-0002-0494-5365
Yuri Vasylovych Prokopenko
https://orcid.org/0000-0001-6366-9279

Анотація

Представлено метод зміни ефективної діелектричної проникності та характеристичного опору мікромеханічно перелаштовуваної копланарної лінії передачі за рахунок переміщення сигнального електрода лінії або діелектричної пластини над поверхнею електродів лінії. Проаналізовано зв'язок перерозподілу електромагнітного поля зі зміною ефективних параметрів лінії. Встановлено вплив електрофізичних та геометричних параметрів лінії на характеристики перелаштування ефективної діелектричної проникності. Розрахунок ефективних параметрів проводився за допомогою методу скінченних елементів. Розраховані значення ефективної діелектричної проникності лінії підтверджено експериментальними вимірюваннями. Отримані результати дають змогу проектувати резонансні елементи та фазообертачі на основі мікромеханічно керованої копланарної лінії.

Бібл. 16, рис. 13, табл. 4.

Блок інформації про статтю

Як цитувати
[1]
A. S. Chernov, I. P. Golubeva, V. A. Kazmirenko, і Y. V. Prokopenko, «Перелаштовувана копланарна лінія», Мікросист., Електрон. та Акуст., т. 23, вип. 6, с. 13–21, Груд 2018.
Розділ
Мікросистеми та фізична електроніка

Посилання

C. Wen, «Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,» IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, 1969. DOI: 10.1109/TMTT.1969.1127105

N. A. Ramli, T. Arslan and N. Haridas, "Design and simulation of a 3-bit DMTL phase shifter for wideband applications," 2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Bordeaux, 2017, pp. 1-5. DOI: 10.1109/DTIP.2017.7984468

M. G. Kulkarni, A. N. Cheeran, K. P. Ray and S. S. Kakatkar, "Design and implementation of CPW low pass filter with good filter selectivity and sharpness factor," 2018 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, 2018, pp. 1-2. DOI: 10.1109/ICMAP.2018.8354617

B. Yang, H. Qian and X. Luo, "Compact CPW bandpass filter with ultra-wide stopband using slow-wave structure," 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Nanjing, 2016, pp. 1-3. DOI: 10.1109/iWEM.2016.7505071

G. Li, H. Zhai, T. Li, L. Li and C. Liang, "CPW-Fed S-Shaped Slot Antenna for Broadband Circular Polarization," in IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 619-622, 2013. DOI: 10.1109/LAWP.2013.2261652

R. S. Li and F. C. Chen, "A tunable bandpass-to-bandstop filter using PIN diode," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, 2016, pp. 1-3. DOI: 10.1109/ICUWB.2016.7790555

A. M. E. Safwat, F. Podevin, P. Ferrari and A. Vilcot, "Tunable Bandstop Defected Ground Structure Resonator Using Reconfigurable Dumbbell-Shaped Coplanar Waveguide," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 9, pp. 3559-3564, Sept. 2006. DOI: 10.1109/TMTT.2006.880654

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín and C. Fumeaux, "Reconfigurable and Tunable S-Shaped Split-Ring Resonators and Application in Band-Notched UWB Antennas," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 9, pp. 3766-3776, Sept. 2016. DOI: 10.1109/TAP.2016.2585183

C. J. Panagamuwa, A. Chauraya and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using photoconducting switches," in IEEE Transactions on Antennas and Propagation, vol. 54, no. 2, pp. 449-454, Feb. 2006. DOI: 10.1109/TAP.2005.863393

H. Jiang et al., "Miniaturized and Reconfigurable CPW Square-Ring Slot Antenna Loaded With Ferroelectric BST Thin Film Varactors," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 7, pp. 3111-3119, July 2012. DOI: 10.1109/TAP.2012.2196918

A. S. Abdellatif et al., "Low Loss, Wideband, and Compact CPW-Based Phase Shifter for Millimeter-Wave Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3403-3413, Dec. 2014. DOI: 10.1109/TMTT.2014.2365539

Y. Poplavko, Y. Prokopenko, V.Pashkov, V. Molchanov, I. Golubeva, V. Kazmirenko, D. Smigin, "Low loss microwave piezo-tunable devices," Proc. of the 36th European Microwave Conference, Manchester, 10-15 Sept. 2006, pp. 657-660. DOI: 10.1109/EUMC.2006.281496

N. -. Zhang, Z. L. Deng and J. -. Huang, "A novel tunable band-pass filter using MEMS technology," The 2010 IEEE International Conference on Information and Automation, Harbin, 2010, pp. 1510-1515. DOI: 10.1109/ICINFA.2010.5512025

A. D. Hrihorev, Elektrodinamika i tekhnika SVCH [Electrodynamics and microwave technology]. Moscow: Vyshaya shkola, 1990.

Golubeva, V. Kazmirenko, P. Sergienko, Yu. Prokopenko "Effective permittivity in tunable microstrip and coplanar lines," Proceedings of the XXXII International Scientific Conference “Electronics and nanotechnology”, April 10-12, Kyiv, 2012, pp. 69-70.

K. C. Gupta and Garg Ramesh, Microstrip lines and slotlines. Norwood, MA, USA: Artech House, Inc., 1996, 547 p.