Beta-Lactoglobulin Sensor Based on ISFET with CеO2 Gate Dielectric
Main Article Content
Abstract
In this article sensor with improved measurement technique for the detection of milk allergens was developed. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. The structure of the sensor with nanocrystalline cerium oxide is proposed with an advanced measurement method, which consists of using a micro-flow system to provide a constant volume of the substance to be tested for the dynamic analysis of the beta-lactoglobulin protein, the major milk allergen. The influence of illumination on the experiment and the degree of cleaning of the sensor surface between each measurement are analyzed. Because the existing ELISA method is too long (1.5 hours), and the proposed method allows to identify the presence of beta-lactoglobulin in a few minutes. Ugs = µA
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
A. Goossens, "Allergy and hypoallergenic products" Handbook of Cosmetic Science and Technology. 3rd edition. chapter 53. Informa Healthcare pp. 553–562, 2009. DOI: 10.1155/2011/467071.
P. Restani, A. Gaiaschi, A. Plebani, B. Beretta, G. Cavagni, A. Fiocchi, C. Poiesi, T. Velonà, A. G. Ugazio, C. L. Galli, "Cross-reactivity between milk proteins from different animal species" Clinical Experimental Allergy, vol. 29, no. 7, pp. 997–1004, 1999, DOI: 10.1046/j.1365-2222.1999.00563.x.
A. Nowak-Wegrzyn, K. A. Bloom, S. H. Sicherer, W. G. Shreffler, S. Noone, N. Wanich, H. A. Sampson, Tolerance to extensively heated milk in children with cow's milk allergy" Journal of Allergy and Clinical Immunology, vol. 122, no. 2, pp. 342-347, DOI: 10.1016/j.jaci.2008.05.043.
J. Andersson, B. Mattiasson, "Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate" Journal of Chromatography A. vol. 1107, no. 1–2, pp. 88-95, 2006 DOI: 10.1016/j.chroma.2005.12.018.
V. Bonfatti, L. Grigoletto, A. Cecchinato, L. Gallo, P. Carnier, "Validation of a new reversed-phase high-performance liquid chromatography method for separation and quantification of bovine milk protein genetic variants" Journal of Chromatography A. 2008. no. 1195, pp. 101-106, DOI: 10.1016/j.chroma.2008.04.075.
E. A. Zvereva, N. I. Smirnova, A. V. Zherdev, B. B. Dzantiev, E. A. Yurova, E. Y. Denisovich, N. A. Zhizhin, V. D. Kharitonov, E. Yu. Agarkova, S. G. Botina, N. V. Ponomareva, E. A. Melnikova, "Development of methods for determination of beta-lactoglobulin in milk and dairy products by immuno- energy analysis", Rational nutrition, nutritional supplements and biostimulants, no. 1, pp. 23-24, 2014
F. Stumr, D. Gabrovska, J. Rysova, P. Hanak, J. Plicka, K. Tomkova, P. Cuhra, M. Kubik, S.Barsova, L. Karsulinovi, H. Bulawova, J. Brychta, " Enzyme-linked immunosorbent assay kit for beta-lactoglobulin determination: interlaboratory study", Journal of AOAC International vol. 92, no. 5, pp. 1519-1525, 2009 DOI: 10.1080/09540100802520755
A. N. Shmyreva, A. V. Borisov, N. V. Maksimchuk, "Electronic Sensors Built on Nanostructured Cerium Oxide Films", Nanotech in Russia no. 5, pp. 382-389, 2010, DOI: 10.1134/S1995078010050137
O. Kutova, M. Dusheiko, T. Obukhova, N. Maksimchuk, T. Borodinova, V. Tymofeev, "H2O2 sensor based on MOSFET with active layer in substrate area", Sensor Electronics and Microsystem Technologies vol. 14, no. 4, pp. 5-12, 2017, DOI: 10.18524/1815-7459.2017.4.116007
O. Kutova, M. Dusheiko, N. I. Klyui, V. A. Skryshevsky, "C-reactive protein detection based on ISFET structure with gate dielectric SiO2 - CeO2", Microelectronic Engineering, vol. 215, no. 15, 110993, 2019 DOI: 10.1016/j.mee.2019.110993.