Вимірювач потужності ультрафіолетового випромінювання
Основний зміст сторінки статті
Анотація
В роботі представлено етапи розробки пристрою для виміру потужності ультрафіолетового (УФ) випромінювання. В якості первинного перетворювача пропонується розроблений авторами фотодіод на основі поверхнево-бар'єрної структури p-Cu1.8S/n-CdS з фоточутливою складовою на основі сульфіду кадмію CdS. Наведено етапи розробки схеми підсилювача для обраного фотодіоду. В якості аналога розглядалась схема підсилювача UV Sensor V2 на основі GUVA-S12SD. Представлено оригінальну схему підсилювача, яка має наступні переваги: однополюсне живлення; менша різниця потенціалів між входом і виходом у порівнянні з аналогом; змінний коефіцієнт підсилення. Виконано розрахунок номіналів компонент схеми. Для обробки сигналу з підсилювача обрано аналого-цифровий перетворювач АЦП К1108ПВ1А та надано його технічні характеристики. Запропонована блок-схема пристрою: фотодіод, підсилювач вхідного сигналу, АЦП, мікроконтролер.
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
P. O. of the E. Union, Advances in solar ultraviolet spectroradiometry. Publications Office of the European Union, 1997, ISBN: 92-828-0990-0.
V. D. Ryzhikov et al., “A Portable Meter of the Ultraviolet Radiation in Biologically Active Ranges of Solar Radiation Based on the ZnSe Semiconductor,” Telecommun. Radio Eng., vol. 55, no. 5, p. 9, 2001, DOI: 10.1615/TelecomRadEng.v55.i5.130.
T. V. Blank and Y. A. Gol’dberg, “Semiconductor photoelectric converters for the ultraviolet region of the spectrum,” Semiconductors, vol. 37, no. 9, pp. 999–1030, Sep. 2003, DOI: 10.1134/1.1610111.
R. Anaeva, A. Berkeliev, and E. Al., “UF-fotopriemnik na osnove poverkhnostno-bar`ernoj struktury` Ga1-xAlxP (Xs = 0,5 + 0,1) [UV photodetector based on the Ga1-xAlxP surface-barrier structure (Xs = 0.5 + 0.1)],” FTP, vol. 15, no. 6, pp. 1122–1125, 1981.
S. Y. Pavelets, Y. N. Bobrenko, T. V. Semikina, B. S. Atdaev, G. I. Sheremetova, and M. V. Yaroshenko, “Ultraviolet Sensors Based on ZnxCd1 – xS Solid Solutions,” Ukr. J. Phys., vol. 64, no. 4, p. 308, May 2019, DOI: 10.15407/ujpe64.4.308.
S. Y. Pavelets, Y. N. Bobrenko, T. V. Semikina, G. I. Sheremetova, and M. V. Yaroshenko, “Photovoltaic converters of ultraviolet radiation with graded-gap layers based on CdxZn1-xS solid solutions,” Optoelectron. Semicond. Technol., vol. 49, pp. 69–73, 2014, URL: http://isp.kiev.ua/images/Page_Image/Jornals/opt/vol49/opt49_69.pdf.
Y. Bobrenko, “Thin-film solar converters based on the p-Cu1.8S/n-CdTe surface-barrier structure,” Semicond. physics, quantum Electron. Optoelectron., vol. 18, no. 1, pp. 101–105, Mar. 2015, DOI: 10.15407/spqeo18.01.101.
Y. N. Bobrenko, S. Y. Pavelets, A. M. Pavelets, T. V. Semikina, and N. V. Yaroshenko, “Surface-barrier photoconverters with graded-gap layers in the space-charge region,” Semiconductors, vol. 49, no. 4, pp. 519–523, Apr. 2015, DOI: 10.1134/S1063782615040089.
S. Y. Pavelets, “Effective polycrystalline sensor of ultraviolet radiation,” Semicond. Phys. Quantum Electron. Optoelectron., vol. 20, no. 3, pp. 335–339, Oct. 2017, DOI: 10.15407/spqeo20.03.335.
V. Dorogan, T. Vieru, M. Manole, R. Savastru, and T. Zisu, “Ultraviolet radiation sensors on the basis of semiconductors,” 2001, p. 858, DOI: 10.1117/12.432818.
V. D. Ryzhikov et al., “Professional and household dosimeters for UV biologically active ranges of solar radiation on the basis of ZnSe semiconductor-metal nanostructures,” 2010, p. 77151Q, DOI: 10.1117/12.853665.
V. K. Butenko, Y. G. Dobrovolsky, B. G. Shabashkevich, and V. G. Yuriev, “Dosimeters for energy illumination of ultraviolet radiation of the Tensor type,” Technol. Des. Electron. Equip., no. 5, pp. 43–45, 2006.
W. Peng, Y. He, C. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensors Actuators A Phys., vol. 184, pp. 34–40, Sep. 2012, DOI: 10.1016/j.sna.2012.06.017.
V. Chivukula, D. Ciplys, M. Shur, and P. Dutta, “ZnO nanoparticle surface acoustic wave UV sensor,” Appl. Phys. Lett., vol. 96, no. 23, p. 233512, Jun. 2010, DOI: 10.1063/1.3447932.
W.-C. Tsai, H. Kao, K.-H. Liao, Y.-H. Liu, T.-P. Lin, and E. S. Jeng, “Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient,” Opt. Express, vol. 23, no. 3, p. 2187, Feb. 2015, DOI: 10.1364/OE.23.002187.
S. Kumar, G.-H. Kim, K. Sreenivas, and R. P. Tandon, “ZnO based surface acoustic wave ultraviolet photo sensor,” J. Electroceramics, vol. 22, no. 1–3, pp. 198–202, Feb. 2009, DOI: 10.1007/s10832-007-9409-7.
W. Wen-Bo et al., “Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors*,” Chinese Phys. B, vol. 24, no. 5, p. 057701, 2015, URL: http://cpb.iphy.ac.cn/article/2015/cpb_24_5_057701.html.
A. I. Sidorov, Sensory photonics. Textbook. St. Petersburg: University, ITMO, 2019.
V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, “Luminescence of silver molecular clusters in photo-thermo-refractive glasses,” Opt. Mater. (Amst)., vol. 36, no. 4, pp. 753–759, Feb. 2014, DOI: 10.1016/j.optmat.2013.11.018.
pcs UV Photodiode 220 to 370nm Ultraviolet Metal Shell Photodiode: Amazon.com: Industrial & Scientific.” [Online]. Available: https://www.amazon.com/Photodiode-370nm-Ultraviolet-Metal-Shell/dp/B07VVHPNFX.
“SiC UV Photodiodes | sglux.” [Online]. Available: https://sglux.de/en/product-category/sic-uv-photodiodes/.
“Genuv.” [Online]. Available: http://www.geni-uv.com/.
“Ultraviolet/Extreme Ultraviolet (UV/EUV) Photodiodes: SXUV 100.” [Online]. Available: https://www.photonicsonline.com/doc/ultravioletextreme-ultraviolet-uveuv-0001.
“Analog UV Sensor V2.” [Online]. Available: https://www.trossenrobotics.com/analog-uv-sensor-v2.aspx.
“Sprint-Layout.” [Online]. Available: https://cxem.net/software/sprint_layout.php.
“AD45048.” [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD45048.pdf.
“1108pv1.” [Online]. Available: https://eandc.ru/pdf/mikroskhema/1108pv1.pdf.