Фероелектричні наночастинки в нанокомпозиті. Вплив розподілу за розмірами на температурні залежності піроелектричного і електрокалоричного перетворення

Основний зміст сторінки статті

Hanna V. Shevliakova
Hryhorii S. Sviechnikov
Mykolai V. Morozoskyi
Hanna M. Morozovska

Анотація

З використанням теоретичного підходу Ландау-Гінзбурга-Девоншира для невзаємодіючих фероелектричних монодоменних сферичних наночастинок різних розмірів, поміщених в діелектричну матрицю, розраховано температурні залежності спонтанної поляризації, електрокалоричної зміни температури і піроелектричного та електрокалоричного коефіцієнтів. Проаналізовано зміни вигляду цих залежностей за різних значень параметрів усіченого нормального розподілу наночастинок за розмірами – найбільш ймовірного радіусу і дисперсії. Показано, що спонтанна поляризація, параметри максимумів піроелектричного та електрокалоричного коефіцієнтів і електрокалоричної зміни температури за однакової величини дисперсії сильно залежать від найбільш ймовірного радіусу, а за однакової величини найбільш ймовірного радіусу слабо залежать від дисперсії. Отримані результати відкривають нову можливість керування піроелектричними і електрокалоричними параметрами фероелектричних нанокомпозитів через параметри розподілу наночастинок за розмірами, що може бути важливим для застосувань у перетворювачах енергії та мікроохолоджувачах.

Блок інформації про статтю

Як цитувати
[1]
H. V. Shevliakova, H. S. Sviechnikov, M. V. Morozoskyi, і H. M. Morozovska, «Фероелектричні наночастинки в нанокомпозиті. Вплив розподілу за розмірами на температурні залежності піроелектричного і електрокалоричного перетворення», Мікросист., Електрон. та Акуст., т. 25, вип. 3, с. 27–35, Груд 2020.
Розділ
Мікросистеми та фізична електроніка
Біографії авторів

Hanna V. Shevliakova, Національний технічний університету України "Київський політехнічний інститут імені Ігоря Сікорського"

аспірант кафедри мікроелектроніки

Hryhorii S. Sviechnikov, Національний технічний університету України "Київський політехнічний інститут імені Ігоря Сікорського"

Старший науковий співробітник. Кандидат фізико-матетематичних наук, 

Доцент кафедри мікроелектроніки.

Mykolai V. Morozoskyi, Інститут фізики, Національна академія наук України

Старший науковий співробітник, Доктор фізико-математичних наук

Провідний науковий співробітник, Лабораторія прикладної сегнетоелектрики

Hanna M. Morozovska, Інститут фізики, Національна академія наук України

Старший науковий співробітник, Доктор фізико-математичних наук.Провідний науковий співробітник, Відділ фізики магнітних явищ 

Посилання

J. F. S. Haitao Huang, Ferroelectric Materials for Energy Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018, ISBN: 9783527807505.

L. S. Kremenchugskiy, Segnetoelektricheskiye priyemniki izucheniya [Ferroelectric study receivers]. Kyiv: Naukova dumka, 1971.

S. Lang, Sourcebook of Pyroelectricity. Gordon and Breach Science Publishers, 1974, ISBN: 9780677015804.

R. Herchig, C.-M. Chang, B. Mani, and I. Ponomareva, “Electrocaloric effect in ferroelectric nanowires from atomistic simulations,” Sci. Rep., vol. 5, no. 1, p. 17294, 2015, DOI: 10.1038/srep17294.

L. S. Kremenchugskiy and O. V. Roytsina, Piroelektricheskiye priyemniki izlucheniya [Pyroelectric radiation detectors]. Kyiv: Naukova dumka, 1979.

P. Kobeko and J. Kurtschatov, “Dielektrische Eigenschaften der Seignettesalzkristalle,” Zeitschrift für Phys., vol. 66, no. 3–4, pp. 192–205, Mar. 1930, DOI: 10.1007/BF01392900.

G. G. Wiseman and J. K. Kuebler, “Electrocaloric Effect in Ferroelectric Rochelle Salt,” Phys. Rev., vol. 131, no. 5, pp. 2023–2027, Sep. 1963, DOI: 10.1103/PhysRev.131.2023.

T. Correia and Q. Zhang, Eds., Electrocaloric Materials: New Generation of Coolers, vol. 34. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2014, ISBN: 978-3-642-40263-0.

Y. Liu, J. F. Scott, and B. Dkhil, “Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives,” Appl. Phys. Rev., vol. 3, no. 3, p. 031102, Sep. 2016, DOI: 10.1063/1.4958327.

A. S. Mischenko, Zhang Q, J. F. Scott, R. W. Whatmore, and N. D. Mathur, “Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3,” Science (80-. )., vol. 311, no. 5765, pp. 1270–1271, 2006, DOI: 10.1126/science.1123811.

J. Ouyang, Ed., Nanostructures in Ferroelectric Films for Energy Applications: Domains, Grains, Interfaces and Engineering Methods. Elsevier, 2019, ISBN: 9780128138564.

S. Pandya et al., “Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films,” Phys. Rev. Appl., vol. 7, no. 3, p. 034025, Mar. 2017, DOI: 10.1103/PhysRevApplied.7.034025.

M. Dietze and M. Es-Souni, “Dielectric and pyroelectric properties of thick and thin film relaxor-ceramic/PVDF-TrFE composites,” Funct. Compos. Struct., vol. 1, no. 3, p. 035005, 2019, DOI: 10.1088/2631-6331/ab3d7a.

H. Huang et al., “Size effects of electrocaloric cooling in ferroelectric nanowires,” J. Am. Ceram. Soc., vol. 101, no. 4, pp. 1566–1575, 2018, DOI: 10.1111/jace.15304.

X. Chen and C. Fang, “Study of electrocaloric effect in barium titanate nanoparticle with core–shell model,” Phys. B Condens. Matter, vol. 415, pp. 14–17, 2013, DOI: 10.1016/j.physb.2013.01.033.

A. Morozovska et al., “Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles,” Phys. Rev. Mater., vol. 3, no. 10, p. 104414, 2019, DOI: 10.1103/PhysRevMaterials.3.104414.

H.-H. H. Wu, J. Zhu, and T.-Y. Y. Zhang, “Size-dependent ultrahigh electrocaloric effect near pseudo-first-order phase transition temperature in barium titanate nanoparticles,” RSC Adv., vol. 5, no. 47, pp. 37476–37484, 2015, DOI: 10.1039/C5RA05008A.

H. V. Shevliakova, A. N. Morozovska, N. V. Morozosky, G. S. Svechnikov, and V. V. Shvartsman, “The influence of the distribution function of ferroelectric nanoparticles sizes on their electrocaloric and pyroelectric properties,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, pp. 1–1, 2020, DOI: 10.1109/TUFFC.2020.3004740.

C. Bowen, J. Taylor, E. Le Boulbar, D. Zabek, and V. Topolov, “A modified figure of merit for pyroelectric energy harvesting,” Mater. Lett., vol. 138, pp. 243–246, 2015, DOI: 10.1016/j.matlet.2014.10.004.

S. L. Bravina, N. V. Morozovsky, and A. A. Strokach, “Pyroelectricity: some new research and application aspects,” in Material Science and Material Properties for Infrared Optoelectronics, 1997, vol. 3182, pp. 85–99, DOI: 10.1117/12.280409.

S. Jachalke et al., “How to measure the pyroelectric coefficient?,” Appl. Phys. Rev., vol. 4, no. 2, p. 021303, Jun. 2017, DOI: 10.1063/1.4983118.

J. D. Baloga and C. W. Garland, “ac calorimetry at high pressure,” Rev. Sci. Instrum., vol. 48, no. 2, pp. 105–110, Feb. 1977, DOI: 10.1063/1.1134987.

YA. A. Kraftmakher, “Modulyatsionnyy metod izmereniya teployemkosti [Modulation method for measuring the heat capacity],” Prikladnaya mekhanika i tekhnicheskaya fizika, no. 5, pp. 176–180, 1962, URL: sibran.ru/journals/issue.php?ID=159921&ARTICLE_ID=160137.

B. Li, J. B. Wang, X. L. Zhong, F. Wang, Y. K. Zeng, and Y. C. Zhou, “Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures,” RSC Adv., vol. 3, no. 21, pp. 7928–7932, 2013, DOI: 10.1039/C3RA41252K.

Y. K. Zeng et al., “Influence of vortex domain switching on the electrocaloric property of a ferroelectric nanoparticle,” RSC Adv., vol. 4, no. 57, pp. 30211–30214, 2014, DOI: 10.1039/C4RA02878C.

Z. Y. Chen, Y. X. Su, Z. D. Zhou, L. S. Lei, and C. P. Yang, “The influence of the electrical boundary condition on domain structures and electrocaloric effect of PbTiO3 nanostructures,” AIP Adv., vol. 6, no. 5, p. 055207, May 2016, DOI: 10.1063/1.4950695.

F. Wang, L. F. Liu, B. Li, Y. Ou, L. Tian, and W. Wang, “Inhomogeneous electric-field–induced negative/positive electrocaloric effects in ferroelectric nanoparticles,” EPL (Europhysics Lett., vol. 117, no. 5, p. 57002, Mar. 2017, DOI: 10.1209/0295-5075/117/57002.

C. Ye, J. B. Wang, B. Li, and X. L. Zhong, “Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure,” Sci. Rep., vol. 8, no. 1, p. 293, Dec. 2018, DOI: 10.1038/s41598-017-18275-0.

A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films. New York, NY: Springer New York, 2010, ISBN: 978-1-4419-1416-3.

A. K. Tagantsev and G. Gerra, “Interface-induced phenomena in polarization response of ferroelectric thin films,” J. Appl. Phys., vol. 100, no. 5, p. 051607, Sep. 2006, DOI: 10.1063/1.2337009.

S. V Kalinin, Y. Kim, D. D. Fong, and A. N. Morozovska, “Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures,” Reports Prog. Phys., vol. 81, no. 3, p. 036502, Mar. 2018, DOI: 10.1088/1361-6633/aa915a.

A. N. Morozovska, Y. M. Fomichоv, P. Maksymovych, Y. M. Vysochanskii, and E. A. Eliseev, “Analytical description of domain morphology and phase diagrams of ferroelectric nanoparticles,” Acta Mater., vol. 160, pp. 109–120, Nov. 2018, DOI: 10.1016/j.actamat.2018.08.051.

S. Aoyagi, Y. Kuroiwa, A. Sawada, H. Kawaji, and T. Atake, “Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder,” J. Therm. Anal. Calorim., vol. 81, no. 3, pp. 627–630, 2005, DOI: 10.1007/s10973-005-0834-z.

M. Aoki, Y. Sato, R. Teranishi, and K. Kaneko, “Measurement of Barium Ion Displacement Near Surface in a Barium Titanate Nanoparticle by Scanning Transmission Electron Microscopy,” Appl. Microsc., vol. 48, no. 1, pp. 27–32, 2018, DOI: 10.9729/AM.2018.48.1.27.

W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, “Phenomenological study of the size effect on phase transitions in ferroelectric particles,” Phys. Rev. B, vol. 50, no. 2, pp. 698–703, Jul. 1994, DOI: 10.1103/PhysRevB.50.698.