Mathematical Model of a Nanosensor Based on Optical Tweezers

Main Article Content

PhD Assoc.Prof. Viacheslav Oleksiiovych Chadiuk
https://orcid.org/0000-0003-0063-6079

Abstract

The paper considers the conditions for capturing a dielectric nanoparticle in a liquid by an optical tweezers trap. It is shown that the displacement of a nanoparticle from the equilibrium position under the action of a local physical field not associated with a laser trap shaper can be used to create a nanosensor for fields of physical or chemical origin.

Article Details

How to Cite
[1]
V. O. Chadiuk, “Mathematical Model of a Nanosensor Based on Optical Tweezers”, Мікросист., Електрон. та Акуст., vol. 26, no. 1, pp. 215524–1 , Apr. 2021.
Section
Microsystems and Physical Electronics
Author Biography

PhD Assoc.Prof. Viacheslav Oleksiiovych Chadiuk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Faculty of Electronics, associate professor

References

M. H. Shabestari et al. “Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy,” Methods in Enzymology, vol. 582, pp. 85–119, 2017, DOI: https://doi.org/10.1016/bs.mie.2016.09.047.

D. Choundhary, A. Mossa, M. Jadhav, C. Cecconi. “Bio-molecular applications of recent developments in optical tweezers,” Biomolecules, vol. 9, article no. 23, pp. 1–19, Jan. 2019, DOI: https://doi.org/10.3390/biom9010023.

X. Zhao et al. “Optical fiber tweezers: a versatile tool for optical trapping and manipulation,” Micromachines, vol. 11, article no. 114, pp. 1–27, Jan. 2020, DOI: https://doi.org/10.3390/mi11020114.

Z. Gong, Y. Pan, G. Videen, C. Wang. ”Optical trapping and manipulation of single particles in air: principles, technical details, and applications,” J. of Quantative Spectroscopy and Radiative Transfer, vol. 214, pp. 94–119, July 2018, DOI: https://doi.org/10.1016/j.jqsrt.2018.04.027.

A. M. Bui et al. “Theory and practice of simulation of optical tweezers,” J. of Quantative Spectroscopy and Radiative Transfer, vol. 195, pp. 66–75, July 2017, DOI: https://doi.org/10.1016/j.jqsrt.2016.12.026.

A. Ashkin. “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, no. 4, pp. 156–159, Jan.1970. DOI: https://doi.org/10.1103/PhysRevLett.24.156

M. Born and E. Wolf. Principles of optics. 7th. ed. Cambridge: Cambridge Univ. Press, 1999. DOI: https://doi.org/10.1017/CBO9781139644181

W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns “Laser trapping in cell biology,” IEEE J. of Quantum Electronics, vol. 26, no. 12, pp. 2148–2157, Dec. 1990. DOI: https://doi.org/10.1109/3.64351.

A. Ashkin. “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J., vol. 61, no. 2, pp. 569–582, Feb. 1992. DOI: https://doi.org/10.1016/S0006-3495(92)81860-X

Y. Harada Y. and T. Asakura. “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun., vol. 124, no. 5–6, pp. 529–541, Jan. 1996. DOI: https://doi.org/10.1016/0030-4018(95)00753-9

A. Rohrbach and E. Stelzer. “Optical trapping of dielectric particles in arbitrary fields,” JOSA A, vol. 18, no. 4, pp. 839–853, Apr. 2001, DOI: https://doi.org/10.1364/JOSAA.18.000839.

K. Sasaki, Z.Y. Shi, R. Kopelman, and H. Masuhara. “Three-dimensional pH microprobing with an optically-manipulated fluorescent particle,” Chem. Lett., vol. 25, no. 2, pp. 141–142, 1996, DOI: https://doi.org/10.1246/cl.1996.141.

V. Passaro et al. “Photonic structures based on slot waveguides for nanosensors: state of the art and future developments,” Intern. J. of Res. & Rev. in Appl. Sci., vol. 11, no. 3, pp. 411–427, June 2012. URL: https://www.arpapress.com/Volumes/Vol11Issue3/IJRRAS_11_3_07.pdf

N. Mauranyapin et al. “Evanescent single-molecule biosensing with quantum-limited precision,” Nature Photonics, vol. 11, no. 8, pp. 477–481, June 2017, DOI: https://doi.org/10.1038/nphoton.2017.99.

I. Choi and Y. Choi. “Plasmonic nanosensors: review and prospect,” IEEE J. of Selected Topics in Quantum Electronics, vol. 18, no. 3, pp. 1110–1121, May 2012, DOI: https://doi.org/10.1109/JSTQE.2011.2163386.

R. Ahijado-Guzman et al. “Plasmonic nanosensors for the determination of drug effectiveness on membrane receptors,” Appl. Mater. Interfaces, vol. 9, no. 1, pp. 218–233, Jan. 2017, DOI: https://doi.org/10.1021/acsami.6b14013.

J. Kneipp, H. Kneipp, B. Witting, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 2, pp. 214–226, Apr. 2010, DOI: https://doi.org/10.1016/j.nano.2009.07.009.

G. Barbillon, “Fabrication and SERS performances of Metal/Si and Metal/ZnO nanosensors: a review,” Coatings, vol. 9, no. 2, pp. 86–99, Jan. 2019, DOI: https://doi.org/10.3390/coatings9020086.

J. Martinazzo et al. “Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium,” J. of Environmental Science and Health, Part B, vol. 53, no. 4, pp. 1–8, Jan. 2018, DOI: https://doi.org/10.1080/03601234.2017.1421833.

A. K. Gupta et al. “Anomalous resonance in a nanomechanical biosensor,” PNAS, vol. 103, no. 36, pp. 13362–13367, Sep. 2006, DOI: https://doi.org/10.1073/pnas.0602022103.

A. Diaspro, Ed. Nanoscopy and Multidimensional Optical Fluorescence Microscopy. – Boca Raton, London, New York: CRC Press, 2010. DOI: https://doi.org/10.1201/9781420078893

Springer Handbook of Nanotechnology, B. Bhusnan ed., Berlin, Heidelberg, New York: Springer, 2007. DOI: https://doi.org/10.1007/978-3-642-02525-9