Dactylogram Processing System

Main Article Content

Vadym Denysovych Zheludkov
https://orcid.org/0000-0002-1268-5305
Dr.Sc.(Eng.) Prof. Tetiana Oleksandrivna Tereshchenko
https://orcid.org/0000-0003-4009-2854
Dr.Sc.(Eng.) Prof. Yuliia Serhiivna Yamnenko
https://orcid.org/0000-0002-9796-6420

Abstract

Recognition of fingerprints (dactyloscopic images) is one of the practical application of signal processing. System of person identification by fingerprints is commonly-used by law enforcement bodies and Border services. This is also important in the field of access control systems and commercial devices where data security is not less important as reliability and data rate of processing algorithms. Existing systems of fingerprints processing are not fully ready for automatic recognition. Also, full modernization of existing equipment is not possible. The paper is devoted to the method of image processing. In particular, the preliminary processing of dactyloscopic images is considered as well as development of theoretical approach and practical realization of first stage of patterns forming – pre-processing of image for decreasing of its size and contrast increasing. The criteria for selecting ranges for sampling and quantization of images are given. Tasks of reducing the fingerprint image while increasing the contrast of the image were considered, analyzed and solved. Image reduction is based on the use of interpolation. It is shown that among the considered interpolation methods - linear, bilinear and bicubic - the latter one could provide the highest accuracy although it needs more hardware resources. However, when the dpi parameter (dots-per-inch) falls below 150, a rapid increase in the number of artifacts in the image is observed.


Increasing of image sharpness is necessary for highlighting of colour transitions and consequently – for increasing the percentage of correct recognitions. Such increasing of image sharpness is proposed to achieve by using the Laplace operator (Laplasian calculation) and adding the result to the original image. The value of derivative at each pixel of the image depends linearly on sharpness level. Thus, it allows separating the areas with abrupt colour changes and gaps from the areas where the brightness is constant or changes slowly. The result of second derivative is much more for the areas with sharp changes than for the areas without them. The areas with constant or slowly-changing brightness after the second derivative calculation become almost the same dark colour. These areas could be restored to original image with retention of sharpness increasing effect. For this, transformed by Laplasian image should be added to the original one. Use of Laplasian allows to get an acceptable balance between the speed and computational complexity of the fingerprint recognition algorithm.


The technical implementation of the device and illustration of its operation are given. Fingerprints image processing system is executed on the base of STM32f407 microcontroller with CortexM core. The system includes capasitive scanner, TFT LCD display and lab power source. The microcontroller software realizes, in particular, interpolation and contrast increasing. The system is module-compatible and able for scaling.

Article Details

How to Cite
[1]
V. D. Zheludkov, T. O. Tereshchenko, and Y. S. Yamnenko, “Dactylogram Processing System”, Мікросист., Електрон. та Акуст., vol. 26, no. 2, pp. 236123–1 , Aug. 2021.
Section
Electronic Systems and Signals
Author Biography

Dr.Sc.(Eng.) Prof. Tetiana Oleksandrivna Tereshchenko, National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute"

Department of Industrial Electronics

References

Lepihova D. N., Gudkov V. Ju., Kirsanova A. A. "Obzor sovremennyh modelej predstavlenija daktiloskopicheskih izobrazhenij" Vestnik JuUrGU. Serija: Vychislitel'naja matematika i informatika. vol. 7, no. 1. pp. 40-59, 2018. DOI: https://doi.org/10.14529/cmse180104

Bolle R. M., Connel J. Y., Pankanti S., Ratha N. K., "Guide to biometrics", Springer-Verlag, New York, 2004, 368 pp. DOI: https://doi.org/10.1007/978-1-4757-4036-3

Roz'jasnennja schodo sistemi avtomatichnogo rozpіznavannja vіdbitkіv pal'tsіv. Gruden', 2020 URL: https://www.euam-ukraine.eu/ua/news/opinion/explanation-on-automated-fingerprints-identification-system/

N. M. Egli Anthonioz and C. Champod "Evidence evaluation in fingerprint comparison and automated fingerprint identification systems – modeling between finger variability" Forensic Science International vol. 235 pp. 86-101 2014. DOI: https://doi.org/10.1016/j.forsciint.2013.12.003

Kai Cao and Anil K. Jain "Learning fingerprint recognition: from minutiae to image" IEEE Transactions on Information Forensics and Security vol. 10 no. 1 pp. 104-117 2015. DOI: https://doi.org/10.1109/TIFS.2014.2363951

Yue Nan Li "Robust content fingerprinting algorithm based on sparse coding" IEEE Signal Processing Letters, vol. 22 no. 9 pp. 1254-1258, 2015. DOI: https://doi.org/10.1109/LSP.2015.2395726

A. Jain Y. Chen and S. Dass "Fingerprint quality indices for predicting authentication performance " in 5th International Conference on Audio- and Video-Based Biometric Person Authentication Rye Brook NY July 20-22 2005. DOI: https://doi.org/10.1007/11527923_17

S. J. Elliott and N. C. Sickler "An evalulation of fingeprint image quality across an elderly population vis-a-vis an 18-25-year-old population " paper presented at the International Carnahan Conference on Security Technology Las Palmas Gran Canaria October 12-14 2005. DOI: https://doi.org/10.1109/CCST.2005.1594817

D. Maltoni D. Maio A. Jain and S. Prabhakar Handbook of Fingerprint Recognition New York NY USA:Springer 2009. ISBN 978-1-84882-254-2

Maltoni D., Maio D., Jain A. K., Prabhakar S., Handbook of fingerprint recognition, Springer-Verlag, New York, 2009, 494 p. DOI: https://doi.org/10.1007/978-1-84882-254-2

Gonzalez R. C., Woods R. E. Digital image processing. 2006. 1072 p.

Cao K., Jain A. K. "Latent Orientation Field Estimation via Convolutional Neural Network". Proceedings of the 2015 International Conference on Biometrics ICB. Phuket, Thailand , May 2015. pp. 349–356. DOI: https://doi.org/10.1109/ICB.2015.7139060

Capelli R., Ferrara M., Maltoni D. "Fingerprint Indexing Based on Minutia Cylinder-Code". IEEE transactions on pattern analysis and machine intelligence. 2011. vol. 33, no. 5, pp. 1051–1057. DOI: https://doi.org/10.1109/TPAMI.2010.228

Choi H., Choi K., Kim J. "Fingerprint Matching Incorporating Ridge Features With Minutiae". IEEE Transactions on Information Forensics and Security. 2011. vol. 6, no. 2, pp. 338–345. DOI: https://doi.org/10.1109/TIFS.2010.2103940

Segundo M. P., Lemes R. "Pore-based Ridge Reconstruction for Fingerprint Recognition". In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2015). 7-12 June 2015, Boston, Massachusetts, USA. 2015. pp. 128–133. DOI: https://doi.org/10.1109/CVPRW.2015.7301328

Bebis G., Deaconu T., Georgiopoulos M. "Fingerprint Identification Using Delaunay Triangulation". Proceedings of the International Conference on Information Intelligence and Systems (Bethesda, MD, USA, 31 Oct.–3 Nov., 1999). 1999. pp. 452–459. DOI: https://doi.org/10.1109/ICIIS.1999.810315

Tereschenko T. O., Jamnenko Ju. S. "Spektral'nі metodi obrobki bіotelemetrichnoї іnformatsії" Jelektronіka ta zv'jazok. vol. 21 no. 4. pp. 38, 2016. DOI: https://doi.org/10.20535/2312-1807.2016.21.4.81904

T. O. Tereschenko, Ju. S. Jamnenko, O. L. Mel'nichenko, M. V. Panchenko "Vejvlet-peretvorennja dlja fіl'tratsії zobrazhen' іz vіdeokamer sposterezhennja" Vchenі zapiski Tavrіjs'kogo natsіonal'nogo unіversitetu іmenі V. І. Vernads'kogo. Serіja : Tehnіchnі nauki. vol. 29(68), no. 3(2). pp. 14-18, 2018. URL http://www.tech.vernadskyjournals.in.ua/journals/2018/3_2018/part_2/5.pdf

Manhua Liu Xiaoying Chen and Xiaoduan Wang "Latent fingerprint enhancement via multi-scale patch based sparse representation" IEEE Transactions on Information Forensics and Security vol. 10 no. 1 pp. 6-15 2015. DOI: https://doi.org/10.1109/TIFS.2014.2360582

Bradford T. Ulery R. Austin Hicklin Maria Antonia Roberts and JoAnn Buscaglia "Changes in latent fingerprint examiners’ markup between analysis and comparison" Forensic Science International vol. 247 pp. 54-61 2015. DOI: https://doi.org/10.1016/j.forsciint.2014.11.021

Kwame Osei Boateng, Benjamin Weyori Asubam and David Sanka Laar "Improving the Effectiveness of the Median Filter" International Journal of Electronics and Communication Engineering. ISSN 0974-2166 vol. 5, no. 1, pp. 85-97, 2018. © International Research Publication House URL: http://www.irphouse.com

Liu Pengyu Ha Rui and Jia Kebin "Improved adaptive median filter and its’ application" Journal of Beijing University of Technology vol. 43 no. 4 pp. 581-586 2017. DOI: https://doi.org/10.11936/bjutxb2016060006

Hongming Zhang, Yongping Wang, and Chuang Peng "Ameliorated mean adaptive median filtering algorithm" E3S Web of Conferences 118, 02069 (2019), pp. 1-4 DOI: https://doi.org/10.1051/e3sconf/201911802069

Chen Xiao and Tang Shihua "Application of improved median filtering in the image denoising" Geospatial Information vol. 13, no. 6, pp. 77-78, 2015. Corpus ID: 123277359

Uğur Erkan, Dang Ngoc Hoang Thanh , Le Minh Hieu and Serdar Enginoğlu "An Iterative Mean Filter for Image Denoising" November 2019, IEEE Access 7:167847 - 167859 DOI: https://doi.org/10.1109/ACCESS.2019.2953924

Jacqueline A. Speir and Jack Hietpas "Frequency filtering to suppress background noise in fingerprint evidence: quantifying the fidelity of digitally enhanced fingerprint images" Forensic Science International vol. 242 no. 9 pp. 94-102 2014. DOI: https://doi.org/10.1016/j.forsciint.2014.06.026 Corpus ID: 64431

Solomon C. J., Breckon T. P. Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley-Blackwell, 2010. ISBN: 0470844736, DOI: https://doi.org/10.1002/9780470689776

Wilhelm Burger, Mark J. Burge. Digital Image Processing: An Algorithmic Approach Using Java Springer, 2007. ISBN 978-1-4471-6684-9

Arnol'd V.I. Lektsii ob uravnenijah s chastnymi proizvodnymi M.: MTsNMO. 2017. 182 p. ISBN 978-5-4439-3174-6

"Skaner otpechatkov pal'tsev: kak eto rabotajet? Kakoj luchshe - jemkostnyj, opticheskij ili ul'trazvukovoj?" URL https://ktc.ua/blog/skaner_vidbitkiv_palciv_yak_ce_pracyuye_yakij_krashhe__yemnisnij_optichnij_chi_ultrazvukovij_.htm