Chladni Figures Simulation on a Rectangular Plate
Main Article Content
Abstract
An analytical model for creating flat Chladni figures is presented. The equation of a standing wave in the simplest boundary conditions and the Fourier transform are used. Top view images are shown at different frequencies. The practical significance of the results obtained for the further development of the field of creating Chladni figures based on standing waves of different physical nature has been determined.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[1]. M. I. Hossaina, N. Yumnam, W. Qarony, A. Salleo, V. Wagner, D. Knipp, Y.H. Tsang, “Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells,” Solar Energy, vol. 198, pp. 570–577, March 2020. DOI: 10.1016/j.solener.2020.01.082
[2]. Z. Liu, H. Zhong, H. Zhang, Z. Huang, G. Liu, X. Liu, G. Fu, C. Tang, “Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption,” Solar Energy, vol. 199, pp. 360–365, March 2020. DOI: 10.1016/j.solener.2020.02.053
[3]. M.S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M.J. Nine, A. Dinovitser, C.M.B. Cordeiro, B.W.-H. Ng, D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon, vol. 158, pp. 559 – 567, March 2020. DOI: 10.1016/j.carbon.2019.11.026
[4]. M. Faraday, “On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by Groups of Particles upon Vibrating Elastic Surfaces,” Philosophical Transactions of the Royal Society of London, vol. 121, pp. 299–340, 1831. DOI: 10.1098/rspl.1830.0024
Timoshenko, S. and Woinowsky-Krieger, S., Theory of plates and shells, McGraw-Hill New York, 1959.
M.Zozyuk, D.Koroliouk, V.Moskaliuk, A.Yurikov and Yu.Yakymenko. Creation of quasiperiodic surfaces under the action of vibrating dielectric matrices, ELNANO-2020, pp. 224 - 229, 2019. DOI: 10.1109/ELNANO50318.2020.9088821
Mikhailov I. G., Soloviev V. A., Syrnikov Yu. P. Fundamentals of molecular acoustics. Nauka, M., 1964.
Isakovich M.A. General acoustics. Nauka, M., 1973.
M. O. Zozyuk, A. I. Yurikov, D. V. Koroliouk, Yu. I. Yakymenko. The Principle of Creating Quasiperiodic Surfaces under the Action of a Vibrating Dielectric Matrix, MicrosystElectronAcoust, 2020, vol. 25, no. 1, 5-10. DOI: 10.20535/2523-4455.mea.202632
Babych B., Borisova O., Machulianskyi O., Yakimenko Y., Rodionov M., Koroliouk D., Yakymenko Yu. Applications of Metal-dielectric nanocomposite structures in information systems. Comm. In ELNANO – IEEE 38th Conference on Electronics and Nanotechnology, 2018, pp. 96-100. DOI: 10.1109/ELNANO.2018.8477509
D. Koroliouk, Classification of binary deterministic statistical experiments with persistent regression, Cybernetics and System Analysis, Springer NY, 2015, vol. 51, No. 4, 644-649. DOI: 10.1007/s10559-015-9755-4
D. Koroliouk, D. Koroliouk, Adapted statistical experiments. Journal of Mathematical Sciences, Springer NY, Vol. 220, No. 5, February 2017, 615-623. DOI: 10.1007/s10958-016-3204-4
D. Koroliouk, “Two component binary statistical experiments with persistent linear regression”, Theory of Probability and Mathematical Statistics, 2015, v.90, pp.103- 114. DOI: 10.1090/tpms/952
[14]. Koroliouk D., “Stationary statistical experiments and the optimal estimator for a predictable component” Journal of Mathematical Sciences, 2016, 214(2), pp.220-228. DOI: 10.1007/s10958-016-2770-9
Koroliouk, D.V., Koroliuk, V.S., Rosato, N., Equilibrium Processes in Biomedical Data Analysis: The Wright–Fisher Model. Cybernetics and Systems Analysis, 2014, 50(6), pp.890-897. DOI: 10.1007/s10559-014-9680-y
Koroliouk, D., Statistical experiments in a balanced Markov random environment. Cybernetics and Systems Analysis, 2015, vol. 51, No. 5, pp.766-771. DOI: 10.1007/s10559-015-9769-y
Koroliouk D., The problem of discrete Markov diffusion leaving an interval. Cybernetics and Systems Analysis, 2016, vol. 52, No. 4, pp.571-576. DOI: 10.1007/s10559-016-9859-5
D. Koroliouk Dynamics of Statistical Experiments, ISTE-WILEY, London, 2020, 224 p. ISBN: 978-1-786-30598-5
D. Koroliouk, I. Samoilenko. Random evolutionary systems: asymptotic properties and large deviations. ISTE-WILEY, London, 2021, 350 p. ISBN: 978-1-119-85125-7
M. D. Waller. Chladni Figures. G. Bell, London, 1961.
H. R. Schwarz. Methode der finiten Elemente. B. G. Teubner, Stuttgart, Germany, 1991. ISBN: 9783519223498
T. Driscoll. Eigenmodes of isospectral drums. SIAM Review, vol. 39, No. 1, pp. 1–17, 1997. URL: https://tobydriscoll.net/publication/driscoll-eigenmodes-isospectral-drums-1997-a/driscoll-eigenmodes-isospectral-drums-1997-a.pdf
Mark Kac. Can one hear the shape of a drum? The American Mathematical Monthly, vol. 73, No. 4, pp. 1–23, 1966. DOI: 10.2307/2313748
D.Koroliouk, M.Zozyuk, Yu.I.Yakymenko. The principle of creating quasiperiodic surfaces under the action of vibrating dielectric matrix, 2020, arXiv:2005.11053 [physics.app-ph].