Physical-Topological Modeling of Electronic Devices with Induction Heating of Particle Emitters

Main Article Content

Nataliia Viktorivna Shynkarenko
https://orcid.org/0000-0003-1650-4783
Serhii Oleksiiovych Maikut
https://orcid.org/0000-0002-0913-4190
PhD Assoc.Prof. Leonid Yuriiovych Tsybulskyi
https://orcid.org/0000-0002-7431-6417
Dr.Sc.(Eng.) Prof. Anatolii Ivanovych Kuzmichiev
https://orcid.org/0000-0003-0087-275X

Abstract

The general principles of physical and topological modeling and construction of algorithms for calculations of a wide range of electronic devices with induction heating of functional elements up to temperatures at which thermoelectronic emission and/or evaporation of the working substance in the atomized state are considered. The direction of physical-topological modeling was chosen due to the possibility of detailed analysis, based on the primary principles for related physical processes in devices, taking into account the impact of physical properties of functional elements and their design and topological (i.e. geometric) parameters. Thus, the results are obtained by solving a system of fundamental equations, which usually include Newton's and Maxwell's equations, the conservation laws of particles, charge, energy and momentum, as well as material properties, boundary and initial conditions. The set of equations is determined by the number of processes that significantly affect the operation of devices. The construction of the device model is based on the consistent hierarchy of elementary physical processes with the sequential transfer of the results of calculations for lower-level models to higher-level models in the form of initial conditions. The original mathematical models of elementary processes are represented by systems of integral-differential equations with partial derivatives in continuous space and continuous time and belong to the class of distributed mathematical models. Methods for solving the system of equations are considered. On the example of a vacuum metal evaporator with induction heating for thermovacuum coating deposition, the procedure of decomposition of the general physical process in the evaporator with a concentrator as a step-down transformer is given and the hierarchy of elementary processes is clarified. Typical initial and boundary conditions for calculating related physical processes are determined. The available application computer soft packages for the calculation of physical and topological models of various induction devices are considered. In the final part of the article it is considered the structure and structure of physical-topological models of devices with induction heating of particle emitters: i) the thermoionic metal evaporator with ionization of vapor by electrons emitted by a thermocathode from an alloy with low electron output, the cathode is made in the form of an insert on the upper end of the crucible, and ii) the X-ray tube with an inductively heated thermoelectron cathode. Calculation results of the electromagnetic field and current distribution, heat exchange in vapor and electron emitters and their emission fluxes, as well as the trajectories of emitted electrons are presented. Analysis of electron trajectories allowed to optimize the topology and design of these devices.

Article Details

How to Cite
[1]
N. V. Shynkarenko, S. O. Maikut, L. Y. Tsybulskyi, and A. I. Kuzmichiev, “Physical-Topological Modeling of Electronic Devices with Induction Heating of Particle Emitters”, Мікросист., Електрон. та Акуст., vol. 27, no. 1, pp. 252810–1, Apr. 2022.
Section
Microsystems and Physical Electronics

References

S. Grundas, Advances in Induction and Microwave Heating of Mineral and Organic Materials. InTech, 2011, ISBN: 978-953-307-522-8. DOI: https://doi.org/10.5772/562

O. Lucia, P. Maussion, E. . Dede, and J. Burdio, “Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges,” IEEE Trans. Ind. Electron, vol. 60, no. 5, pp. 2509–2520, 2013. DOI: https://doi.org/10.1109/TIE.2013.2281162.

“Vacuum Induction Melting,” in ASM Handbook, 2008, pp. 1–8.

B. N. P. Vishnuram, G. Ramachandiran, T. S. Babu, “Induction Heating in Domestic Cooking and Industrial Melting,” Energies, vol. 14, no. 20, pp. 1–34, 2021, DOI: https://doi.org/10.3390/en14206634.

D. R. Gibson, D. Yates, J. O’Driscoll, and J. Allen, “A Versa-tile Plasma Source for Thin Film Processing Ap-plications”, 43rd Annual Conference Proceedings of the Society of Vacuum Coaters, ISSN: 0757-5921, 2000. pp. 203–206. URL: https://www.svc.org/DigitalLibrary/document.cfm/1718/A-Versatile-Plasma-Source-for-Thin-Film-Processing-Applications

A. Kuzmichev and L.Tsybulsky, “Evaporators with Induction Heating and Their Applications,” in Advances in Induction and Microwave Heating of Mineral and Organic Materials, 2010, pp. 269–302, DOI: https://doi.org/10.5772/13934

D. Child, D. Gibson, F. Placido, and E. Waddell, “Enhanced hollow cathode plasma source for assisted low pressure electron beam deposition processes,” Surf. Coat. Technol, vol. 267, pp. 105–110, 2015, DOI: https://doi.org/10.1016/j.surfcoat.2014.12.030.

A. I. Kuz'michov, L. YU. Tsybul'skiy, S. YU. Sidorenko, “Termoemissionnyi ionizator parov metallov [Thermoemission ionizer of metal vapour],” Her. Khmelnytskyi Natl. Univ., vol. 231, no. 6, pp. 217–224, 2015, URL: http://nbuv.gov.ua/UJRN/Vchnu_tekh_2015_6_47.

A. I. Kuz'michov, L. YU. Tsibul'skiy, S. A. Maykut, I. M. Drozd, “Induktsionno-termicheskii metod polucheniya mikro- i nanochastits [Inductive-termal method of obtaining micro- and nanoparticles],” Nanosistemi Nanomater. Nanotehnologii [Nanosustems, Nanomater. nanotechnologies], vol. 15, no. 1, pp. 141–162, 2017, URL: https://www.imp.kiev.ua/nanosys/media/pdf/2017/1/nano_vol15_iss1_p0141p0162_2017.pdf.

G. Herdrich and M. Auweter-Kurtz, “Inductively heated plasma sources for technical applications,” Vacuum, vol. 80, pp. 1138–1143, 2006, DOI: https://doi.org/10.1016/j.vacuum.2006.01.044.

Ye. Berlin, V. Grigor'yev, L. Seydman, Induktivnye istochniki vysokoplotnoi plasmy i ih technologicheskie primenetiya [Inductive sources of high density plasma and their application]. 2018, ISBN: 978-5-94836-519-0.

P. K. Roy, A. Moon, K. Mima, S. Nakai, M. Fujita, K. Imasaki, C. Yamanaka, E. Yasuda, T. Watanabe, N. Ohigashi, Y. Okuda and Y. Tsunawaki, “Study of a laser heated electron gun,” Rev. Sci. Instruments, vol. 67, no. 12, pp. 4098–4102, 1996, DOI: 10.1063/1.1147577.

J. R. Nosov, K. O. Petrosjanc, and V. A. Shilin, Matematicheskie modeli jelementov integral’noj jelektroniki [Mathematical models of integrated electronics elements]. Moscow: Soviet radio, 1976, URL: https://www.libex.ru/detail/book792792.html.

I. P. Norenkov and V. B. Manichev, Osnovy teorii i proektirovanija SAPR [Fundamentals of CAD theory and design]. Moscow: High school, 1990, ISBN: 5-06-000730-8.

L. Yu. Tsybulskyi, “Physical-topological modelling techniques of metal induction evaporator,” Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia. no. 63, pp. 107-118, 2015, URL: http://radap.kpi.ua/radiotechnique/article/view/1160. DOI: https://doi.org/10.20535/RADAP.2015.63.107-118.

L. Tsibulskiy, “Numerical calculation of temperature distribution in crucible of induction evaporator with magnetic field concentrator”, Bull. Kyiv Polytech. Inst. Ser. Instrum. Mak., no. 50(2), pp. 92–100, Dec. 2015. URL: http://visnykpb.kpi.ua/article/view/57766. DOI: https://doi.org/10.20535/1970.50(2).2015.57766

E. Ryndin and I. Pisarenko, “Study of transient processes in a p-i-n photodetector using the nonstationary physical-topological model,” Russ. Microelectron., vol. 46, no. 3, pp. 186–191, 2017, DOI: https://doi.org/10.1134/S1063739717030064.

V. S. Boldasov, B. I. Volkov, A. G. Sveshnikov, and Η. N. Semashko, “Matematicheskie metody modelirovanija formirovanija i transportirovki ionnyh puchkov [Mathematical methods for modeling the formation and transport of ion beams],” Vestn. Mosk. Univ. Ser. Vychislitel’naja Mat. i Kibern., no. 1, pp. 3–14, 1978.

J. R. Nosov, K. O. Petrosjanc, and V. A. Shilin, Matematicheskie modeli jelementov integral’noj jelektroniki [Mathematical models of integrated electronics elements]. 1976, URL: https://www.libex.ru/detail/book792792.html.

V. P. Sigorskij, Matematicheskij apparat inzhenera [Mathematical apparatus of an engineer]. Kyiv: Tekhnika, 1977.

“ANSYS, Inc.” [Online]. Available: https://www.ansys.com/.

“COMSOL inc.” [Online]. Available: https://www.comsol.com/.

I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices. 2017, ISBN: 9780198508380. DOI: https://doi.org/10.1093/acprof:oso/9780198508380.001.0001

A. E. Sluhockij and S. E. Ryskin, Induktory dlja indukcionnogo nagreva [Inductors for induction heating]. Leningrad: Energiya, 1974, URL: http://ccimlab-leti.ru/publs/A.E.Sluhockij-Induktory_dlja_indukcionnogo_nagreva-1974.pdf.

V. S. Nemkov and V. B. Demidovich, Teorija i raschet ustrojstv indukcionnogo nagreva [Theory and calculation of induction heating devices]. Leningrad: Energoatomizdat, 1988, URL: https://www.studmed.ru/nemkov-vs-demidovich-vb-teoriya-i-raschet-ustanovok-indukcionnogo-nagreva_8e2732b1107.html.

S. Deshman, Nauchnye osnovy vakuumnoj tehniki [Scientific foundations of vacuum technology]. Moscow: Mir, 1964.

J. Shackelford and W. Alexander, Materials Science and Engineering Handbook. Boca Raton: : CRC Press LLC, 2011.

V. N. Andronov, B. V. Chekin, and S. V. Nesterenko, Zhidkie metally i shlaki : spravochnik [Liquid metals and slags: a reference book]. Moscow: Metallurgija, 1977.

V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Teploperedacha: uchebnik dlja vuzov [Heat transfer: a textbook for universities]. Moscow: Jenergija, 1975.

V. Zinov’ev, Teplofizicheskie svojstva metallov pri vysokoj temperature spravochnoe izdanie [Thermophysical properties of metals at high temperature reference book]. Moscow: Metallurgija, 1989.

V. P. Glushko, Termodinamicheskie svojstva individual’nyh veshhestv : spravochnoe izdanie [Thermodynamic properties of individual substances: reference book]. Moscow: Nauka, 1981.

D. H. Zigel’, Teploobmen izlucheniem [Heat transfer by radiation]. Moscow: Mir, 1975.

M. A. Miheev and I. M. Miheeva, Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow: Jenergija, 1977.

F. N. Sarapulov, Raschet moshhnostej i jelektromagnitnyh sil v ustanovkah indukcionnogo nagreva: uchebnoe posobie [Calculation of powers and electromagnetic forces in induction heating installations: tutorial]. Yekaterinburg: UGTU, 1998.