Сенсори на основі нанорозмірних кремнієвих 1D структур для промислового, екологічного та медичного моніторингу

Основний зміст сторінки статті

Ярослав Олексійович Ліневич
https://orcid.org/0000-0002-8399-034X
к.т.н. доц. Вікторія Михайлівна Коваль
https://orcid.org/0000-0002-3898-9163

Анотація

В даній роботі було зроблено огляд сучасних сенсорів на основі кремнієвих нанониток (SiNWs). Здійснено класифікацію таких сенсорів за методами синтезу SiNWs, принципом дії, вхідною величиною та видами модифікаторів. Було встановлено, що нанонитки для сенсорів були синтезовані переважно методом метало-стимульованого хімічного травлення. За принципом дії переважна більшість таких сенсорів є електричними: резистивного, ємнісного, електрохімічного, діодного чи транзисторного типу. Проаналізовано використання різних видів модифікаторів (наночастинок благородних металів, металоорганічних каркасних структур, вуглецевих нанотрубок, графену, самозбірних моношарів, металевих та метало-оксидних тонких плівок) на поверхні SiNWs з точки зору технології їх синтезу, механізму дії та величини впливу на робочі характеристики приладів. Було встановлено вплив ширини, висоти та густини кремнієвих нанониток на чутливість, селективність, стабільність та швидкодію сенсорів. Визначені в даній роботі залежності можуть бути затребуваними для розробки технології виготовлення різних видів SiNWs — сенсорів високої ефективності.

Блок інформації про статтю

Як цитувати
[1]
Я. О. Ліневич і В. М. Коваль, «Сенсори на основі нанорозмірних кремнієвих 1D структур для промислового, екологічного та медичного моніторингу», Мікросист., Електрон. та Акуст., т. 27, вип. 2, с. 264376–1, Сер 2022.
Розділ
Оглядові статті

Посилання

“Sensor Market: Trends, Opportunities and Competitive Analysis.” [Online]. Available: https://www.lucintel.com/global-sensor-market-2017-2022.aspx?gclid=Cj0KCQjwnvOaBhDTARIsAJf8eVMWF1ZZ2QRSHArxNWmOqunO_9-guz5LaV7_ENoYxftzSw2mUvYaPGcaAjAzEALw_wcB. [Accessed: 29-Mar-2022].

M. K. Chini, V. Kumar, A. Javed, and S. Satapathi, “Graphene quantum dots and carbon nano dots for the FRET based detection of heavy metal ions,” Nano-Structures & Nano-Objects, vol. 19, p. 100347, Jul. 2019, DOI: https://doi.org/10.1016/j.nanoso.2019.100347.

V. Koval et al., “Application of Au Nanoparticles for Silicon Heterojunction Solar Cells,” in 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), 2018, pp. 186–190, DOI: https://doi.org/10.1109/ELNANO.2018.8477552.

J. Xu et al., “Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter,” J Hazard Mater, vol. 428, p. 128158, Apr. 2022, DOI: https://doi.org/10.1016/j.jhazmat.2021.128158.

N. P. Shetti, A. Mishra, S. Basu, and T. M. Aminabhavi, “Versatile fullerenes as sensor materials,” Mater Today Chem, vol. 20, p. 100454, Jun. 2021, DOI: https://doi.org/10.1016/j.mtchem.2021.100454.

M.-W. Ahn, K.-S. Park, J.-H. Heo, D.-W. Kim, K. J. Choi, and J.-G. Park, “On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity,” Sens Actuators B Chem, vol. 138, no. 1, pp. 168–173, Apr. 2009, DOI: https://doi.org/10.1016/j.snb.2009.02.008.

N. L. Torad, I. M. Minisy, H. M. Sharaf, J. Stejskal, Y. Yamauchi, and M. M. Ayad, “Gas sensing properties of polypyrrole/poly(N-vinylpyrrolidone) nanorods/nanotubes-coated quartz-crystal microbalance sensor,” Synth Met, vol. 282, p. 116935, Dec. 2021, DOI: https://doi.org/10.1016/j.synthmet.2021.116935.

N. Pradeep et al., “Development and investigation of the flexible hydrogen sensor based on ZnO-decorated Sb2O3 nanobelts,” Mater Today Chem, vol. 22, p. 100576, Dec. 2021, DOI: https://doi.org/10.1016/j.mtchem.2021.100576.

L. Chen et al., “The piezotronic effect in InGaN/GaN quantum-well based microwire for ultrasensitive strain sensor,” Nano Energy, vol. 72, p. 104660, Jun. 2020, DOI: https://doi.org/10.1016/j.nanoen.2020.104660.

V. Koval et al., “Reactive Ion Beam Sputtered Molybdenum Oxide Thin Films for Optoelectronic Application,” in 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), 2020, pp. 246–250, DOI: https://doi.org/10.1109/ELNANO50318.2020.9088736.

H. Hou, G. Shao, W. Yang, and W.-Y. Wong, “One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption,” Prog Mater Sci, vol. 113, p. 100671, Aug. 2020, DOI: https://doi.org/10.1016/j.pmatsci.2020.100671.

H. Hou et al., “General Strategy for Fabricating Thoroughly Mesoporous Nanofibers,” J Am Chem Soc, vol. 136, no. 48, pp. 16716–16719, Dec. 2014, DOI: https://doi.org/10.1021/ja508840c.

H. Hou, M. Shang, L. Wang, W. Li, B. Tang, and W. Yang, “Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls,” Sci Rep, vol. 5, no. 1, p. 15228, Dec. 2015, DOI: https://doi.org/10.1038/srep15228.

X. Ren et al., “Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers,” Small, vol. 12, no. 29, pp. 4007–4017, Aug. 2016, DOI: https://doi.org/10.1002/smll.201600991.

H. Hou et al., “Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO 2 /CuO/Cu Thoroughly Mesoporous Nanofibers,” ACS Appl Mater Interfaces, vol. 8, no. 31, pp. 20128–20137, Aug. 2016, DOI: https://doi.org/10.1021/acsami.6b06644.

M. Shang, H. Hou, F. Gao, L. Wang, and W. Yang, “Mesoporous Ag@TiO 2 nanofibers and their photocatalytic activity for hydrogen evolution,” RSC Adv, vol. 7, no. 48, pp. 30051–30059, 2017, DOI: https://doi.org/10.1039/C7RA03177G.

H. Hou et al., “Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO 2 /WO 3 /g-C 3 N 4 nanofibers for visible-light-driven hydrogen evolution,” J Mater Chem A Mater, vol. 4, no. 17, pp. 6276–6281, 2016, DOI: https://doi.org/10.1039/C6TA02307J.

X. J. Li, S. J. Chen, and C. Y. Feng, “Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor,” Sens Actuators B Chem, vol. 123, no. 1, pp. 461–465, Apr. 2007, DOI: https://doi.org/10.1016/j.snb.2006.09.021.

M. Jeribi, N. Nafie, M. F. Boujmil, and M. Bouaicha, “Response modulation of silicon nanowires-based sensor to carbon number in petroleum vapor detection,” Fuel, vol. 304, p. 121260, Nov. 2021, DOI: https://doi.org/10.1016/j.fuel.2021.121260.

V. Gautam, A. Kumar, S. Nagpal, and V. K. Jain, “Ultrasensitive detection of formaldehyde at room temperature using Si-chip assisted MOS/SiNWs nanocomposite based sensor,” J Alloys Compd, vol. 919, p. 165840, Oct. 2022, DOI: https://doi.org/10.1016/j.jallcom.2022.165840.

C.-K. Liu, J.-M. Wu, and H. C. Shih, “Application of plasma modified multi-wall carbon nanotubes to ethanol vapor detection,” Sens Actuators B Chem, vol. 150, no. 2, pp. 641–648, Oct. 2010, DOI: https://doi.org/10.1016/j.snb.2010.08.026.

Y. S. Ocak, M. L. Zeggar, M. F. Genişel, N. U. Uzun, and M. S. Aida, “CO2 sensing behavior of vertically aligned Si Nanowire/ZnO structures,” Mater Sci Semicond Process, vol. 134, p. 106028, Nov. 2021, DOI: https://doi.org/10.1016/j.mssp.2021.106028.

L. Baba Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, and T. Hadjersi, “H2 sensing properties of modified silicon nanowires,” Progress in Natural Science: Materials International, vol. 25, no. 2, pp. 101–110, Apr. 2015, DOI: https://doi.org/10.1016/j.pnsc.2015.03.003.

Y. Qin and J. Zang, “Stable clusters array of silicon nanowires developed by top-plating technique as a high-performance gas sensor,” Physica E Low Dimens Syst Nanostruct, vol. 127, p. 114508, Mar. 2021, DOI: https://doi.org/10.1016/j.physe.2020.114508.

M. G. Dusheiko, V. M. Koval, and T. Yu. Obukhova, “Silicon nanowire arrays synthesized using the modified MACE process: Integration into chemical sensors and solar cells,” Semiconductor Physics, Quantum Electronics and Optoelectronics, vol. 25, no. 1, pp. 58–67, Mar. 2022, DOI: https://doi.org/10.15407/spqeo25.01.058.

B. Tao, J. Zhang, S. Hui, and L. Wan, “An amperometric ethanol sensor based on a Pd–Ni/SiNWs electrode,” Sens Actuators B Chem, vol. 142, no. 1, pp. 298–303, Oct. 2009, DOI: https://doi.org/10.1016/j.snb.2009.08.004.

ZT. Zhang, L. Mu, G. She, and W. Shi, “2 × 2 Fluorescent sensor array based on SiNWs for analysis of Pb2+, Cd2+, Cr3+ and Hg2+,” J Lumin, vol. 209, pp. 267–273, May 2019, DOI: https://doi.org/10.1016/j.jlumin.2019.01.055.

G. Lehoucq et al., “Highly sensitive pH measurements using a transistor composed of a large array of parallel silicon nanowires,” Sens Actuators B Chem, vol. 171–172, pp. 127–134, Aug. 2012, DOI: https://doi.org/10.1016/j.snb.2012.01.054.

X. Chen, J. Zhang, Z. Wang, Q. Yan, and S. Hui, “Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification,” Sens Actuators B Chem, vol. 156, no. 2, pp. 631–636, Aug. 2011, DOI: https://doi.org/10.1016/j.snb.2011.02.009.

Y. Linevech, V. Koval, M. Dusheyko, Yu. Yakymenko, M. Lakyda, and V. Barbash, “Silicon Diode Structures Based on Nanowires for Temperature Sensing Application,” in IEEE 42 th International Conference on Electronics and Nanotechnology (ELNANO), 2022. DOI: https://doi.org/10.1109/ELNANO54667.2022.9927122.

A. Kumar et al., “Fabrication of SiNWs/Graphene nanocomposite for IR sensing,” Mater Today Proc, vol. 32, pp. 397–401, 2020, DOI: https://doi.org/10.1016/j.matpr.2020.02.086.

A. A. Leonardi, M. J. lo Faro, and A. Irrera, “Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review,” Nanomaterials, vol. 11, no. 2, p. 383, Feb. 2021, DOI: https://doi.org/10.3390/nano11020383.

M. Zeraati, T.-C. Chen, M. Ebri, N. P. S. Chauhan, and G. Sargazi, “Length prediction of silicon nanowires (SiNWs) prepared by the MACE method using the ANN-COA-PSO algorithm for high supercapacitor applications,” Journal of Physics and Chemistry of Solids, vol. 156, p. 110146, Sep. 2021, DOI: https://doi.org/10.1016/j.jpcs.2021.110146.

Y. Xi et al., “A facile synthesis of silicon nanowires/micropillars structure using lithography and metal-assisted chemical etching method,” J Solid State Chem, vol. 258, pp. 181–190, Feb. 2018, DOI: https://doi.org/10.1016/j.jssc.2017.07.034.

N. Ahmed, P. B. Bhargav, A. Rayerfrancis, B. Chandra, and P. Ramasamy, “Study the effect of plasma power density and gold catalyst thickness on Silicon Nanowires growth by Plasma Enhanced Chemical Vapour Deposition,” Mater Lett, vol. 219, pp. 127–130, May 2018, DOI: https://doi.org/10.1016/j.matlet.2018.02.086.

B. R. Deepu, S. M. Anil, P. Savitha, and Y. B. Basavaraju, “Advanced VLS growth of gold encrusted silicon nanowires Mediated by porous Aluminium Oxide template,” Vacuum, vol. 185, p. 109991, Mar. 2021, DOI: https://doi.org/10.1016/j.vacuum.2020.109991.

M. Tintelott, V. Pachauri, S. Ingebrandt, and X. T. Vu, “Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays,” Sensors, vol. 21, no. 15, p. 5153, Jul. 2021, DOI: https://doi.org/10.3390/s21155153.

W. A. B. Z. Abidin et al., “Femtomolar Dengue Virus Type-2 DNA Detection in Back-gated Silicon Nanowire Field-effect Transistor Biosensor,” Curr Nanosci, vol. 18, no. 1, pp. 139–146, Jan. 2022, DOI: https://doi.org/10.2174/1573413717666210226120940.

T. K. Adhila, H. Elangovan, K. Chattopadhyay, and H. C. Barshilia, “Kinked silicon nanowires prepared by two-step MACE process: Synthesis strategies and luminescent properties,” Mater Res Bull, vol. 140, p. 111308, Aug. 2021, DOI: https://doi.org/10.1016/j.materresbull.2021.111308.

M. Zeraati, T.-C. Chen, M. Ebri, N. P. S. Chauhan, and G. Sargazi, “Length prediction of silicon nanowires (SiNWs) prepared by the MACE method using the ANN-COA-PSO algorithm for high supercapacitor applications,” Journal of Physics and Chemistry of Solids, vol. 156, p. 110146, Sep. 2021, DOI: https://doi.org/10.1016/j.jpcs.2021.110146.

K. Zhang, S. Qin, P. Tang, Y. Feng, and D. Li, “Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures,” J Hazard Mater, vol. 391, p. 122191, Jun. 2020, DOI: https://doi.org/10.1016/j.jhazmat.2020.122191.

Y. Qin, X. Wang, and J. Zang, “Ultrasensitive ethanol sensor based on nano-Ag&ZIF-8 co-modified SiNWs with enhanced moisture resistance,” Sens Actuators B Chem, vol. 340, p. 129959, Aug. 2021, DOI: https://doi.org/10.1016/j.snb.2021.129959.

Y. Qin, X. Wang, and J. Zang, “Room-temperature ethanol sensor based on ZIF-67 modified silicon nanowires with expanded detection range and enhanced moisture resistance,” Chem Phys Lett, vol. 765, p. 138302, Feb. 2021, DOI: https://doi.org/10.1016/j.cplett.2020.138302.

A. Kumar, H. Dhasmana, A. Kumar, V. Kumar, A. Verma, and V. K. Jain, “Highly sensitive MWCNTs/SiNWs hybrid nanostructured sensor fabricated on silicon-chip for alcohol vapors detection,” Physica E Low Dimens Syst Nanostruct, vol. 127, p. 114538, Mar. 2021, DOI: https://doi.org/10.1016/j.physe.2020.114538.

H. Shan et al., “Excellent ethanol sensor based on multiwalled carbon nanotube-doped ZnO,” Chinese Science Bulletin, vol. 59, no. 4, pp. 374–378, Feb. 2014, DOI: https://doi.org/10.1007/s11434-013-0034-3.

X. Song et al., “Highly Sensitive Ammonia Gas Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors,” ACS Appl Mater Interfaces, vol. 13, no. 12, pp. 14377–14384, Mar. 2021, DOI: https://doi.org/10.1021/acsami.1c00585.

L. Song et al., “Reduced Graphene Oxide-Coated Si Nanowires for Highly Sensitive and Selective Detection of Indoor Formaldehyde,” Nanoscale Res Lett, vol. 14, no. 1, p. 97, Dec. 2019, DOI: https://doi.org/10.1186/s11671-019-2921-2.

V. Gautam, A. Kumar, R. Kumar, V. K. Jain, and S. Nagpal, “Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde,” Mater Sci Semicond Process, vol. 123, p. 105571, Mar. 2021, DOI: https://doi.org/10.1016/j.mssp.2020.105571.

J. Cui, L. Shi, T. Xie, D. Wang, and Y. Lin, “UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures,” Sens Actuators B Chem, vol. 227, pp. 220–226, May 2016, DOI: https://doi.org/10.1016/j.snb.2015.12.010.

Y. Qin, Z. Cui, T. Zhang, and D. Liu, “Polypyrrole shell (nanoparticles)-functionalized silicon nanowires array with enhanced NH3-sensing response,” Sens Actuators B Chem, vol. 258, pp. 246–254, Apr. 2018, DOI: https://doi.org/10.1016/j.snb.2017.11.089.

Y. Hong et al., “Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate,” Sens Actuators B Chem, vol. 232, pp. 653–659, Sep. 2016, DOI: https://doi.org/10.1016/j.snb.2016.04.010.

W. Zhang, M. Hu, X. Liu, Y. Wei, N. Li, and Y. Qin, “Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor,” J Alloys Compd, vol. 679, pp. 391–399, Sep. 2016, DOI: https://doi.org/10.1016/j.jallcom.2016.03.287.

Y. Qin, Y. Jiang, and L. Zhao, “Enhanced humidity resistance of porous SiNWs via OTS functionalization for rarefied NO2 detection,” Sens Actuators B Chem, vol. 283, pp. 61–68, Mar. 2019, DOI: https://doi.org/10.1016/j.snb.2018.12.013.

D. Li, J. Hu, R. Wu, and J. G. Lu, “Conductometric chemical sensor based on individual CuO nanowires,” Nanotechnology, vol. 21, no. 48, p. 485502, Dec. 2010, DOI: https://doi.org/10.1088/0957-4484/21/48/485502.

S. Hui et al., “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sens Actuators B Chem, vol. 155, no. 2, pp. 592–597, Jul. 2011, DOI: https://doi.org/10.1016/j.snb.2011.01.015.

Q. Yan et al., “Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications,” Electrochim Acta, vol. 61, pp. 148–153, Feb. 2012, DOI: https://doi.org/10.1016/j.electacta.2011.11.098.

J.-C. Lin, B.-R. Huang, and Y.-K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sens Actuators B Chem, vol. 184, pp. 27–32, Jul. 2013, DOI: https://doi.org/10.1016/j.snb.2013.04.060.

K. Zhou, Z. Zhao, P. Yu, and Z. Wang, “Highly sensitive pH sensors based on double-gate silicon nanowire field-effect transistors with dual-mode amplification,” Sens Actuators B Chem, vol. 320, p. 128403, Oct. 2020, DOI: https://doi.org/10.1016/j.snb.2020.128403.

K. Zhou, Z. Zhao, L. Pan, and Z. Wang, “Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology,” Sens Actuators B Chem, vol. 279, pp. 111–121, Jan. 2019, DOI: https://doi.org/10.1016/j.snb.2018.09.114.

S.-K. Cho and W.-J. Cho, “Ultra-high sensitivity pH-sensors using silicon nanowire channel dual-gate field-effect transistors fabricated by electrospun polyvinylpyrrolidone nanofibers pattern template transfer,” Sens Actuators B Chem, vol. 326, p. 128835, Jan. 2021, DOI: https://doi.org/10.1016/j.snb.2020.128835.

H. Li, J. Zhang, B. Tao, L. Wan, and W. Gong, “Investigation of capacitive humidity sensing behavior of silicon nanowires,” Physica E Low Dimens Syst Nanostruct, vol. 41, no. 4, pp. 600–604, Feb. 2009, DOI: https://doi.org/10.1016/j.physe.2008.10.016.

B. Tao, J. Zhang, F. Miao, H. Li, L. Wan, and Y. Wang, “Capacitive humidity sensors based on Ni/SiNWs nanocomposites,” Sens Actuators B Chem, vol. 136, no. 1, pp. 144–150, Feb. 2009, DOI: https://doi.org/10.1016/j.snb.2008.10.039.

T. Dinh et al., “High thermosensitivity of silicon nanowires induced by amorphization,” Mater Lett, vol. 177, pp. 80–84, Aug. 2016, DOI: https://doi.org/10.1016/j.matlet.2016.04.171.

Ya. O. Linevych, V. M. Koval, M. G. Dusheiko, and М. О. Lakyda, “SYNTHESIS AND INVESTIGATION OF SILICON 1D NANOSTRUCTURES FOR APPLICATION IN LIGHT SENSORS,” Scientific notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, no. 4, pp. 327–337, 2022, DOI: https://doi.org/10.32838/2663-5941/2022.4/50.

L. Zeng et al., “Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm,” NPG Asia Mater, vol. 10, no. 4, pp. 352–362, Apr. 2018, DOI: https://doi.org/10.1038/s41427-018-0035-4.

S. Wang and H. Shen, “Fast response and broadband self-powered photodetectors based on CZTS/SiNW core-shell heterojunctions for health monitoring,” Ceram Int, vol. 48, no. 8, pp. 10779–10788, Apr. 2022, DOI: https://doi.org/10.1016/j.ceramint.2021.12.294.