Application of k-Nearest Neighbors Method for Drug Concentration and Cardiotoxicity Classification Using Extracellular Field Potentials and Reconstructed Action Potentials of Cardiac Cells

Main Article Content

Mukhailo Oleksandrovych Shpotak
https://orcid.org/0000-0002-4706-7603
PhD Assoc.Prof. Nataliia Heorviivna Ivanushkina
https://orcid.org/0000-0001-8389-7906

Abstract

Micro-electrode array (MEA) systems are important for measuring extracellular field potentials (FP) of cardiac cells, which is a crucial step in cardiotoxicity assessment. However, without modification, the MEA system is only capable of recording FPs. This limits the number of parameters for cardiotoxicity assessment only to FP parameters, while the action potential (AP) parameters remain unused. To address this issue the MEA systems are often modified to use electro- or optoporation to record the local extracellular APs (LEAPs), which allows to reliably quantify the AP morphology. As an alternative to MEA modification and cell membrane stimulation the AP can be reconstructed mathematically.This study explores how using additional parameters from reconstructed action potentials (RAPs), derived from FPs, can improve the accuracy of k-NN machine learning models for drug concentration and potential cardiotoxicity classification. The k-NN classifier was trained using combinations of FP and RAP parameters. The k-NN models were evaluated using five-fold stratified cross-validation and cross-channel validation. Their performances were compared using error rate, macro precision, macro recall and macro F1 score accuracy metrics. The results indicated that ncorporating RAP parameters into the feature set increased the F1 score of k-NN model for DMSO concentration classification by up to 10.78% compared to the training set with only FP features.

Article Details

How to Cite
[1]
M. O. Shpotak and N. H. Ivanushkina, “Application of k-Nearest Neighbors Method for Drug Concentration and Cardiotoxicity Classification Using Extracellular Field Potentials and Reconstructed Action Potentials of Cardiac Cells”, Мікросист., Електрон. та Акуст., vol. 29, no. 1, pp. 295601.1–295601.8, Mar. 2024.
Section
Electronic Systems and Signals

References

K. W. Johnson et al., “Artificial Intelligence in Cardiology”, J. Amer. College Cardiol., vol. 71, no. 23, pp. 2668–2679, Jun. 2018. DOI: https://doi.org/10.1016/j.jacc.2018.03.521

P. P. Kanade et al., “MEA-integrated cantilever platform for comparison of real-time change in electrophysiology and contractility of cardiomyocytes to drugs”, Biosens. Bioelectron., p. 114675, Sep. 2022. DOI: https://doi.org/10.1016/j.bios.2022.114675

H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise of deep learning in drug discovery”, Drug Discov. Today, vol. 23, no. 6, pp. 1241–1250, Jun. 2018. DOI: https://doi.org/10.1016/j.drudis.2018.01.039

J. M. Rivera‐Arbeláez et al., “Automated assessment of human engineered heart tissues using deep learning and template matching for segmentation and tracking”, Bioeng. & Translational Medicine, Apr. 2023. DOI: https://doi.org/10.1002/btm2.10513

W. Guo et al., “Review of machine learning and deep learning models for toxicity prediction”, Exp. Biol. Medicine, Dec. 2023. DOI: https://doi.org/10.1177/15353702231209421

L. Pu, M. Naderi, T. Liu, H.-C. Wu, S. Mukhopadhyay, and M. Brylinski, “eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates”, BMC Pharmacol. Toxicol., vol. 20, no. 1, Jan. 2019. DOI: https://doi.org/10.1186/s40360-018-0282-6

D. Pan, B. Li, and S. Wang, “Establishment and validation of a torsade de pointes prediction model based on human iPSC‑derived cardiomyocytes”, Exp. Therapeutic Medicine, vol. 25, no. 1, Dec. 2022. DOI: https://doi.org/10.3892/etm.2022.11760

H. B. Hayes et al., “Novel method for action potential measurements from intact cardiac monolayers with multiwell microelectrode array technology”, Scientific Rep., vol. 9, no. 1, Aug. 2019. DOI: https://doi.org/10.1038/s41598-019-48174-5

B. Duckert, M. Fauvart, P. Goos, T. Stakenborg, L. Lagae, and D. Braeken, “High-definition electroporation: Precise and efficient transfection on a microelectrode array”, J. Controlled Release, vol. 352, pp. 61–73, Dec. 2022. DOI: https://doi.org/10.1016/j.jconrel.2022.10.001

M. Dipalo et al., “Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes”, Sci. Advances, vol. 7, no. 15, Apr. 2021, Art. no. eabd5175. DOI: https://doi.org/10.1126/sciadv.abd5175

N. G. Ivanushkina, K. O. Ivanko, M. O. Shpotak, and Y. V. Prokopenko, “Reconstruction of action potentials of cardiac cells from extracellular field potentials”, Radioelectronics Commun. Syst., vol. 65, no. 7, pp. 354–364, Jul. 2022. DOI: https://doi.org/10.3103/s0735272722090047

R. Visone et al., “Micro-electrode channel guide (µECG) technology: An online method for continuous electrical recording in a human beating heart-on-chip”, Biofabrication, vol. 13, no. 3, p. 035026, Apr. 2021. DOI: https://doi.org/10.1088/1758-5090/abe4c4

M. Malik, “Drug-Induced qt/qtc interval shortening: Lessons from drug-induced qt/qtc prolongation”, Drug Saf., vol. 39, no. 7, pp. 647–659, Mar. 2016. DOI: https://doi.org/10.1007/s40264-016-0411-3

L. G. J. Tertoolen, S. R. Braam, B. J. van Meer, R. Passier, and C. L. Mummery, “Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes”, Biochem. Biophysical Res. Commun., vol. 497, no. 4, pp. 1135–1141, Mar. 2018. DOI: https://doi.org/10.1016/j.bbrc.2017.01.151

A. A. Kondratyev, J. G. C. Ponard, A. Munteanu, S. Rohr, and J. P. Kucera, “Dynamic changes of cardiac conduction during rapid pacing”, Amer. J. Physiol.-Heart Circulatory Physiology, vol. 292, no. 4, pp. H1796—H1811, Apr. 2007. DOI: https://doi.org/10.1152/ajpheart.00784.2006

S.-W. Hyun, B.-R. Kim, S.-A. Hyun, and J.-W. Seo, “The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system”, J. Pharmacolog. Toxicolog. Methods, vol. 87, pp. 93–98, Sep. 2017. DOI: https://doi.org/10.1016/j.vascn.2017.03.003

P. Pradhapan, J. Kuusela, J. Viik, K. Aalto-Setälä, and J. Hyttinen, “Cardiomyocyte MEA Data Analysis (CardioMDA) – A Novel Field Potential Data Analysis Software for Pluripotent Stem Cell Derived Cardiomyocytes”, PLoS ONE, vol. 8, no. 9, Sep. 2013, Art. no. e73637. DOI: https://doi.org/10.1371/journal.pone.0073637

T. Kaneko et al., “On-chip in vitro cell-network pre-clinical cardiac toxicity using spatiotemporal human cardiomyocyte measurement on a chip”, Scientific Rep., vol. 4, no. 1, Apr. 2014. DOI: https://doi.org/10.1038/srep04670

I. Saini, D. Singh, and A. Khosla, “QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases”, J. Adv. Res., vol. 4, no. 4, pp. 331–344, Jul. 2013. DOI: https://doi.org/10.1016/j.jare.2012.05.007

J. Galvao, B. Davis, M. Tilley, E. Normando, M. R. Duchen, and M. F. Cordeiro, “Unexpected low‐dose toxicity of the universal solvent DMSO”, FASEB J., vol. 28, no. 3, pp. 1317–1330, Dec. 2013. DOI: https://doi.org/10.1096/fj.13-235440

N. Augustin, C. Alvarez, and J. Kluger, “The Arrhythmogenicity of Sotalol and its Role in Heart Failure: A Literature Review”, J. Cardiovascular Pharmacol., Publish Ahead of Print, May 2023. DOI: https://doi.org/10.1097/fjc.0000000000001439

H. Lenhoff, H. Jarnbert-Petersson, B. Darpo, P. Tornvall, and M. Frick, “Mortality and ventricular arrhythmias in patients on d,l-sotalol for rhythm control of atrial fibrillation - A nationwide cohort study”, Heart Rhythm, Aug. 2023. DOI: https://doi.org/10.1016/j.hrthm.2023.08.019

J. Larson, L. Rich, A. Deshmukh, E. C. Judge, and J. J. Liang, “Pharmacologic Management for Ventricular Arrhythmias: Overview of Anti-Arrhythmic Drugs”, J. Clin. Medicine, vol. 11, no. 11, p. 3233, Jun. 2022. DOI: https://doi.org/10.3390/jcm11113233