Огляд мікрофабрикованих ультразвукових систем для біомедичних застосувань
Основний зміст сторінки статті
Анотація
Використання ультразвуку (УЗ) в медичній промисловості інтенсивно розвивалося протягом останніх восьми десятиліть, і наразі різноманітність медичних застосувань включає широкий спектр діагностичних можливостей, які задовольняють вимогам загальної фізичної діагностики, офтальмології, кардіології, отоларингології, онкології, акушерства та гінекології, гастроентерології, анестезіології тощо.
Технології, які використовуються в медичному ультразвуковому дослідженні, рухалися вперед від простих одновимірних сканерів до складних систем візуалізації, а також мініатюризованих носимих або імплантованих ультразвукових датчиків.
П’єзоелектричні матеріали стали стандартом у медичному ультразвуковому діагностуванні. Цій технології притаманний ряд особливостей, а саме необхідність узгодження імпедансів та вимоги до розширення робочого діапазону частот системи. Перше призводить до втрат потужності під час передачі акустичної енергії, тоді як друге має вирішальне значення для забезпечення якісної роздільної здатності і, як наслідок, впливає на деталізацію опису уражень або анатомічних особливостей органів людини. Іншим аспектом є сумісність з біологічними тканинами, що призвело до різноманіття синтезованих п’єзокерамічних матеріалів.
Одночасно із розвитком п’єзоелектричних матеріалів, відбулось розширення можливостей мікроелектронного виробництва, що спричинило прорив у розробці ультразвукових перетворювачів завдяки винаходу так званих мікрооброблених ультразвукових перетворювачів (МУП). Такі перетворювачі є багатообіцяючою технологією, яка може допомогти досягти ряду переваг порівняно зі звичайними п’єзокерамічними пристроями, таких як сумісність з платформами спеціалізованих інтегральних мікросхем, внаслідок чого підвищується загальна надійність електронної системи, а також мінімізації проблем, пов’язаних з безпекою пацієнтів. Вони також забезпечують можливість зменшити енергоспоживання системи за допомогою складної енергоефективної схеми обробки і покращити узгодження імпедансів. Ще одна перевага МУП полягає в тому, що вони мають кращу відповідність між елементами ультразвукового масиву саме завдяки повторюваності технологій виготовлення.
Ультразвукові системи візуалізації зазвичай включають не лише один перетворювач, а цілий їх масив, інтегрований в акустичну антену. У таких системах алгоритми формування УЗ променя виконуються шляхом введення затримок в тракти передачі або прийому електричних сигналів для кожного перетворювача (або їх групи) в масиві. Такі підходи можуть дати перевагу в отриманні ширшої смуги пропускання методами перекриття частотного спектру кількох перетворювачів з різними формами мембрани або формуванням одного каналу, який включає перетворювачі із суміжними резонансними частотами.
Електрична частина ультразвукової системи зазвичай складається трактів попередньої аналогової обробки і кінцевої цифрової обробки сигналів. Перший тракт слугує для накачування потужності в режимі випромінювання і попереднього підсилення відбитого сигналу в режимі прийому, тому включає в себе схеми драйверів, низькошумних підсилювачів, аналогових фільтрів та аналогово-цифрових перетворювачів (АЦП). Другий тракт використовується для керування режимами роботи АЦП і реалізує загальний алгоритм цифрової обробки сигналу. Засоби формування направленості у режимах прийому та випромінювання можуть бути реалізовані як цифровими, так і аналоговими методами.
Отже, у статті досліджено принципи розробки та виготовлення мікрооброблених ультразвукових перетворювачів, а також визначено основні принципи побудови аналогово-цифрових систем обробки сигналів, акцентуючи увагу на забезпеченні широкосмуговості пристроїв трактів прийому та передачі.
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
C. F. Dietrich et al., “History of Ultrasound in Medicine from its birth to date (2022), on occasion of the 50 Years Anniversary of EFSUMB. A publication of the European Federation of Societies for Ultrasound In Medicine and Biology (EFSUMB), designed to record the historical development of medical ultrasound,” Med Ultrason, vol. 24, no. 4, p. 434, Dec. 2022, DOI: https://doi.org/10.11152/mu-3757.
R. Manske, K. Podoll, A. Markowski, M. Watkins, L. Hayward, and M. Maitland, “Physical Therapists Use of Diagnostic Ultrasound Imaging in Clinical Practice: A Review of Case Reports,” Int J Sports Phys Ther, vol. 18, no. 1, Feb. 2023, DOI: https://doi.org/10.26603/001c.68137.
T. H. Williamson and A. Harris, “Color Doppler ultrasound imaging of theeye and orbit,” Surv Ophthalmol, vol. 40, no. 4, pp. 255–267, Jan. 1996, DOI: https://doi.org/10.1016/S0039-6257(96)82001-7.
G. S. Mintz, “Intravascular Imaging of Coronary Calcification and Its Clinical Implications,” JACC Cardiovasc Imaging, vol. 8, no. 4, pp. 461–471, Apr. 2015, DOI: https://doi.org/10.1016/j.jcmg.2015.02.003.
C.-K. Chen, Y.-L. Wan, L.-C. Hsieh, and P.-H. Tsui, “Transmastoid Ultrasound Detection of Middle Ear Effusion and Its Association with Clinical Audiometric Tests,” Life, vol. 12, no. 4, p. 599, Apr. 2022, DOI: https://doi.org/10.3390/life12040599.
Z. Hou et al., “Ultrasound Computed Tomography Reflection Imaging with Coherence-Factor Beamforming for Breast Tumor Early Detection,” Mathematics, vol. 12, no. 7, p. 1106, Apr. 2024, DOI: https://doi.org/10.3390/math12071106.
F. Recker, U. Gembruch, and B. Strizek, “Clinical Ultrasound Applications in Obstetrics and Gynecology in the Year 2024,” J Clin Med, vol. 13, no. 5, p. 1244, Feb. 2024, DOI: https://doi.org/10.3390/jcm13051244.
K. J. Rittenhouse et al., “Accuracy of portable ultrasound machines for obstetric biometry,” Ultrasound in Obstetrics & Gynecology, vol. 63, no. 6, pp. 772–780, Jun. 2024, DOI: https://doi.org/10.1002/uog.27541.
M. A. Mekky, “Endoscopic ultrasound in gastroenterology: From diagnosis to therapeutic implications,” World J Gastroenterol, vol. 20, no. 24, p. 7801, 2014, DOI: https://doi.org/10.3748/wjg.v20.i24.7801.
A. S. Terkawi, D. Karakitsos, M. Elbarbary, M. Blaivas, and M. E. Durieux, “Ultrasound for the Anesthesiologists: Present and Future,” The Scientific World Journal, vol. 2013, no. 1, Jan. 2013, DOI: https://doi.org/10.1155/2013/683685.
F. Recker, F. Kipfmueller, A. Wittek, B. Strizek, and L. Winter, “Applications of Point-of-Care-Ultrasound in Neonatology: A Systematic Review of the Literature,” Life, vol. 14, no. 6, p. 658, May 2024, DOI: https://doi.org/10.3390/life14060658.
“History of Medical Ultrasound,” Donald School Journal of Ultrasound in Obstetrics and Gynecology, vol. 11, no. 2, pp. 91–100, Jun. 2017, DOI: https://doi.org/10.5005/jp-journals-10009-1509.
A. Carovac, F. Smajlovic, and D. Junuzovic, “Application of Ultrasound in Medicine,” Acta Informatica Medica, vol. 19, no. 3, p. 168, 2011, DOI: https://doi.org/10.5455/aim.2011.19.168-171.
A. F. Kukk, F. Scheling, R. Panzer, S. Emmert, and B. Roth, “Combined ultrasound and photoacoustic C-mode imaging system for skin lesion assessment,” Sci Rep, vol. 13, no. 1, p. 17947, Oct. 2023, DOI: https://doi.org/10.1038/s41598-023-44919-5.
T. Saul, S. D. Siadecki, R. Berkowitz, G. Rose, D. Matilsky, and A. Sauler, “M-Mode Ultrasound Applications for the Emergency Medicine Physician,” J Emerg Med, vol. 49, no. 5, pp. 686–692, Nov. 2015, DOI: https://doi.org/10.1016/j.jemermed.2015.06.059.
G. M. Lanza, “Ultrasound Imaging,” Invest Radiol, vol. 55, no. 9, pp. 573–577, Sep. 2020, DOI: https://doi.org/10.1097/RLI.0000000000000679.
M. Eagle, “Doppler ultrasound - basics revisited,” British Journal of Nursing, vol. 15, no. Sup2, pp. S24–S30, Jun. 2006, DOI: https://doi.org/10.12968/bjon.2006.15.Sup2.21238.
J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1552–1574, 1998, DOI: https://doi.org/10.1109/5.704260.
Q. Zhu et al., “A Piezoelectric Micro-Machined Ultrasonic Transducer Array Based on Flexible Substrate,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2018, pp. 345–348, DOI: https://doi.org/10.1109/NEMS.2018.8556929.
J. F. Hou et al., “An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation,” Nat Commun, vol. 15, no. 1, p. 4601, Jun. 2024, DOI: https://doi.org/10.1038/s41467-024-48748-6.
K. A. Snook et al., “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 49, no. 2, pp. 169–176, Feb. 2002, DOI: https://doi.org/10.1109/58.985701.
K. T. Dussik, “Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten,” Gesellschaft für Neurol. und Psychiatr, vol. 1, no. 1, pp. 153–168, Dec. 1942. DOI: https//doi.org/10.1007/BF02877929
Q. Zhou, K. H. Lam, H. Zheng, W. Qiu, and K. K. Shung, “Piezoelectric single crystal ultrasonic transducers for biomedical applications,” Prog Mater Sci, vol. 66, pp. 87–111, Oct. 2014, DOI: https://doi.org/10.1016/j.pmatsci.2014.06.001.
S. A. Naida, T. M. Zheliaskova, A. S. Naida, H. A. Kliushnichenko, and A. V. Damarad, “Methods for Calculating the Transfer Functions of Broadband Plate Piezoelectric Transducers with Transition Layers,” Journal of Nano- and Electronic Physics, vol. 13, no. 6, pp. 06029-1-06029–6, 2021, DOI: https://doi.org/10.21272/jnep.13(6).06029.
Z. Zhang, L. Yang, X. Wang, H. Luo, and Y. Wang, “Synergistic Enhancement of Bandwidth and Sensitivity of Phased Array Ultrasonic Transducer With Novel Acoustic Mismatch Structure,” IEEE Trans Instrum Meas, vol. 73, pp. 1–7, 2024, DOI: https://doi.org/10.1109/TIM.2024.3375407.
T. A. Whittingham, “Broadband transducers,” Eur Radiol, vol. 9, no. S3, pp. S298–S303, Nov. 1999, DOI: https://doi.org/10.1007/PL00014060.
M. Chen-Glasser, P. Li, J. Ryu, and S. Hong, “Piezoelectric Materials for Medical Applications,” in Piezoelectricity - Organic and Inorganic Materials and Applications, InTech, 2018. DOI: https://doi.org/10.5772/intechopen.76963.
J. Peng, Z. Hu, H. Tang, X. Chen, T. Wang, and S. Chen, “Fabrication and performance of a 10 MHz annular array based on PMN-PT single crystal for medical imaging,” in 2013 IEEE International Ultrasonics Symposium (IUS), 2013, pp. 516–518, DOI: https://doi.org/10.1109/ULTSYM.2013.0134.
J. Schulze-Clewing, M. J. Eberle, and D. N. Stephens, “Miniaturized circular array [for intravascular ultrasound],” in 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121), pp. 1253–1254, DOI: https://doi.org/10.1109/ULTSYM.2000.921550.
C. Chircov and A. M. Grumezescu, “Microelectromechanical Systems (MEMS) for Biomedical Applications,” Micromachines (Basel), vol. 13, no. 2, p. 164, Jan. 2022, DOI: https://doi.org/10.3390/mi13020164.
J. Lee et al., “A 36-Channel Auto-Calibrated Front-End ASIC for a pMUT-Based Miniaturized 3-D Ultrasound System,” IEEE J Solid-State Circuits, vol. 56, no. 6, pp. 1910–1923, Jun. 2021, DOI: https://doi.org/10.1109/JSSC.2021.3049560.
A. Bhuyan et al., “A 32×32 integrated CMUT array for volumetric ultrasound imaging,” in 2013 IEEE International Ultrasonics Symposium (IUS), 2013, pp. 545–548, DOI: https://doi.org/10.1109/ULTSYM.2013.0141.
X. Zhu, K. Vasanth, X. Xu, C. Smyth, and B. Rhoton, “Application based reliability assessment and qualification methodology for medical ICs,” in 2011 International Reliability Physics Symposium, 2011, pp. 3B.4.1-3B.4.8, DOI: https://doi.org/10.1109/IRPS.2011.5784482.
M. K. Chirala, P. Huynh, J. Ryu, and Y.-H. Kim, “A 128-ch Δ-Σ ADC based mixed signal IC for full digital beamforming Wireless handheld Ultrasound imaging system,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 1339–1342, DOI: https://doi.org/10.1109/EMBC.2015.7318616.
T.-C. Cheng and T.-H. Tsai, “CMOS Ultrasonic Receiver With On-Chip Analog-to-Digital Front End for High-Resolution Ultrasound Imaging Systems,” IEEE Sens J, vol. 16, no. 20, pp. 7454–7463, Oct. 2016, DOI: https://doi.org/10.1109/JSEN.2016.2599580.
J. Kang et al., “A System-on-Chip Solution for Point-of-Care Ultrasound Imaging Systems: Architecture and ASIC Implementation,” IEEE Trans Biomed Circuits Syst, vol. 10, no. 2, pp. 412–423, Apr. 2016, DOI: https://doi.org/10.1109/TBCAS.2015.2431272.
D. Brennan and P. Galvin, “Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML,” Sensors, vol. 24, no. 2, p. 560, Jan. 2024, DOI: https://doi.org/10.3390/s24020560.
U. Denmirci, O. Oralkan, J. A. Johnson, A. S. Ergun, M. Karaman, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducer arrays for medical imaging: experimental results,” in 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), pp. 957–960, DOI: https://doi.org/10.1109/ULTSYM.2001.991878.
A. Dauba et al., “Evaluation of capacitive micromachined ultrasonic transducers for passive monitoring of microbubble-assisted ultrasound therapies,” J Acoust Soc Am, vol. 148, no. 4, pp. 2248–2255, Oct. 2020, DOI: https://doi.org/10.1121/10.0002096.
H. Wang, Y. Ma, H. Yang, H. Jiang, Y. Ding, and H. Xie, “MEMS Ultrasound Transducers for Endoscopic Photoacoustic Imaging Applications,” Micromachines (Basel), vol. 11, no. 10, p. 928, Oct. 2020, DOI: https://doi.org/10.3390/mi11100928.
Y. Lu et al., “Broadband piezoelectric micromachined ultrasonic transducers based on dual resonance modes,” in 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2015, pp. 146–149, DOI: https://doi.org/10.1109/MEMSYS.2015.7050907.
S. H. Øygard et al., “Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducers,” J Acoust Soc Am, vol. 153, no. 3, pp. 1887–1897, Mar. 2023, DOI: https://doi.org/10.1121/10.0017533.
L. Wang, W. Zhu, Z. Wu, W. Liu, and C. Sun, “A Novel Broadband Piezoelectric Micromachined Ultrasonic Transducer with Resonant Cavity,” in 2021 IEEE International Ultrasonics Symposium (IUS), 2021, pp. 1–4, DOI: https://doi.org/10.1109/IUS52206.2021.9593779.
G. G. Yaralioglu, A. S. Ergun, and A. Bozkurt, “Vertical cavity capacitive transducer,” J Acoust Soc Am, vol. 149, no. 4, pp. 2137–2144, Apr. 2021, DOI: https://doi.org/10.1121/10.0003931.
B. Shieh, K. G. Sabra, and F. L. Degertekin, “Efficient Broadband Simulation of Fluid-Structure Coupling for Membrane-Type Acoustic Transducer Arrays Using the Multilevel Fast Multipole Algorithm,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 63, no. 11, pp. 1967–1979, Nov. 2016, DOI: https://doi.org/10.1109/TUFFC.2016.2591920.
K. Smyth and S.-G. Kim, “Experiment and simulation validated analytical equivalent circuit model for piezoelectric micromachined ultrasonic transducers,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 62, no. 4, pp. 744–765, Apr. 2015, DOI: https://doi.org/10.1109/TUFFC.2014.006725.
Y. Birjis et al., “Piezoelectric Micromachined Ultrasonic Transducers (PMUTs): Performance Metrics, Advancements, and Applications,” Sensors, vol. 22, no. 23, p. 9151, Nov. 2022, DOI: https://doi.org/10.3390/s22239151.
T. Xu et al., “Equivalent Circuit Models of Cell and Array for Resonant Cavity-Based Piezoelectric Micromachined Ultrasonic Transducer,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 67, no. 10, pp. 2103–2118, Oct. 2020, DOI: https://doi.org/10.1109/TUFFC.2020.2993805.
E. Ledesma, A. Uranga, F. Torres, and N. Barniol, “Fully Integrated Pitch-Matched AlScN PMUT-on-CMOS Array for High- Resolution Ultrasound Images,” IEEE Sens J, vol. 24, no. 10, pp. 15954–15966, May 2024, DOI: https://doi.org/10.1109/JSEN.2024.3385911.
T. Xu, D. Caponi, and Z. Da, “Enhancing Broadband Transmission Performance of Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) via Electrical Matching Network,” in 2023 IEEE International Ultrasonics Symposium (IUS), 2023, pp. 1–4, DOI: https://doi.org/10.1109/IUS51837.2023.10307481.
H. Wang, Y. Yu, Z. Chen, H. Yang, H. Jiang, and H. Xie, “Design and Fabrication of a Piezoelectric Micromachined Ultrasonic Transducer Array Based on Ceramic PZT,” in 2018 IEEE SENSORS, 2018, pp. 1–4, DOI: https://doi.org/10.1109/ICSENS.2018.8589693.
S. Sharma and T. Ytterdal, “Low noise front-end amplifier design for medical ultrasound imaging applications,” in 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC), 2012, pp. 12–17, DOI: https://doi.org/10.1109/VLSI-SoC.2012.7332069.
Di Fu et al., “A novel method for fabricating 2-D array piezoelectric micromachined ultrasonic transducers for medical imaging,” in 2009 18th IEEE International Symposium on the Applications of Ferroelectrics, 2009, pp. 1–4, DOI: https://doi.org/10.1109/ISAF.2009.5307546.
O. Oralkan, S. T. Hansen, B. Bayram, G. G. Yaralglu, A. S. Ergun, and B. T. Khuri-Yakub, “High-frequency CMUT arrays for high-resolution medical imaging,” in IEEE Ultrasonics Symposium, 2004, pp. 399–402, DOI: https://doi.org/10.1109/ULTSYM.2004.1417747.
Y. Lu, A. Heidari, and D. A. Horsley, “A High Fill-Factor Annular Array of High Frequency Piezoelectric Micromachined Ultrasonic Transducers,” Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 904–913, Aug. 2015, DOI: https://doi.org/10.1109/JMEMS.2014.2358991.
F. Pop et al., “Zero-Power Acoustic Wake-Up Receiver Based on DMUT Transmitter, PMUTS Arrays Receivers and MEMS Switches for Intrabody Links,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, pp. 150–153, DOI: https://doi.org/10.1109/TRANSDUCERS.2019.8808176.
H.-Y. Chen, Y.-S. Chan, T.-H. Hsu, M.-H. Li, and S.-S. Li, “A Single-Chip CMOS-MEMS CMUT Array Transceiver With Low Bias,” in 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 2023, pp. 136–139, URL: https://ieeexplore.ieee.org/document/10516927.
S. Sadeghpour, M. Ingram, C. Wang, J. D’Hooge, and M. Kraft, “A $128times 1$ Phased Array Piezoelectric Micromachined Ultrasound Transducer (pMUT) for Medical Imaging,” in 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 2021, pp. 34–37, DOI: https://doi.org/10.1109/Transducers50396.2021.9495521.
Y. He, H. Wan, X. Jiang, and C. Peng, “Piezoelectric Micromachined Ultrasound Transducer Technology: Recent Advances and Applications,” Biosensors (Basel), vol. 13, no. 1, p. 55, Dec. 2022, DOI: https://doi.org/10.3390/bios13010055.
K. K. Park, O. Oralkan, and B. T. Khuri-Yakub, “A comparison between conventional and collapse-mode capacitive micromachined ultrasonic transducers in 10-MHz 1-D arrays,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 60, no. 6, pp. 1245–1255, Jun. 2013, DOI: https://doi.org/10.1109/TUFFC.2013.2688.
B. Zhu, B. P. Tiller, A. J. Walker, A. J. Mulholland, and J. F. C. Windmill, “‘Pipe Organ’ Inspired Air-Coupled Ultrasonic Transducers With Broader Bandwidth,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 65, no. 10, pp. 1873–1881, Oct. 2018, DOI: https://doi.org/10.1109/TUFFC.2018.2861575.
M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics, vol. 74, pp. 144–152, Feb. 2017, DOI: https://doi.org/10.1016/j.ultras.2016.10.002.
T. Wang and C. Lee, “Electrically switchable multi-frequency piezoelectric micromachined ultrasonic transducer (pMUT),” in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), 2016, pp. 1106–1109, DOI: https://doi.org/10.1109/MEMSYS.2016.7421828.
T. M. Adams and R. A. Layton, Introductory MEMS. Boston, MA: Springer US, 2010, ISBN: 978-0-387-09510-3. DOI: https://doi.org/10.1007/978-0-387-09511-0
A. Dangi et al., “A Photoacoustic Imaging Device Using Piezoelectric Micromachined Ultrasound Transducers (PMUTs),” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 67, no. 4, pp. 801–809, Apr. 2020, DOI: https://doi.org/10.1109/TUFFC.2019.2956463.
X.-B. Wang et al., “Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array,” Sensors, vol. 21, no. 5, p. 1823, Mar. 2021, DOI: https://doi.org/10.3390/s21051823.
S. Sadeghpour, S. V. Joshi, C. Wang, and M. Kraft, “Novel Phased Array Piezoelectric Micromachined Ultrasound Transducers (pMUTs) for Medical Imaging,” IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, vol. 2, pp. 194–202, 2022, DOI: https://doi.org/10.1109/OJUFFC.2022.3207128.
W. Ji et al., “Total-Focus Ultrasonic Imaging of Defects in Solids Using a PZT Piezoelectric Micromachined Ultrasonic Transducer Array,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 68, no. 4, pp. 1380–1386, Apr. 2021, DOI: https://doi.org/10.1109/TUFFC.2020.3032988.
Q. Zhou, S. Lau, D. Wu, and K. Kirk Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog Mater Sci, vol. 56, no. 2, pp. 139–174, Feb. 2011, DOI: https://doi.org/10.1016/j.pmatsci.2010.09.001.
L. Zhao, C. Yang, X. Zhang, Z. You, and Y. Lu, “Broadband and High-Pressure Output PMUT Array Based on Lead-Free KNN Thin Film,” in 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), 2024, pp. 979–982, DOI: https://doi.org/10.1016/10.1109/MEMS58180.2024.10439309.
W. Liu, C. Zhu, and D. Wu, “Flexible piezoelectric micro ultrasonic transducer array integrated on various flexible substrates,” Sens Actuators A Phys, vol. 317, p. 112476, Jan. 2021, DOI: https://doi.org/10.1016/10.1016/j.sna.2020.112476.
Z. Wang et al., “Fabrication of 2-D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array through Silicon Wafer Bonding,” Micromachines (Basel), vol. 13, no. 1, p. 99, Jan. 2022, DOI: https://doi.org/10.3390/mi13010099.
D. H. Le, T. Manh, and L. Hoff, “Lamination of Capacitive Micromachined Ultrasonic Transducer on a Piezoelectric Array: Process and Evaluation,” in 2023 24th European Microelectronics and Packaging Conference & Exhibition (EMPC), 2023, pp. 1–4, DOI: https://doi.org/10.23919/EMPC55870.2023.10418279.
A. Caronti et al., “Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging,” Microelectronics J, vol. 37, no. 8, pp. 770–777, Aug. 2006, DOI: https://doi.org/10.1016/j.mejo.2005.10.012.
K. Brenner, A. Ergun, K. Firouzi, M. Rasmussen, Q. Stedman, and B. Khuri–Yakub, “Advances in Capacitive Micromachined Ultrasonic Transducers,” Micromachines (Basel), vol. 10, no. 2, p. 152, Feb. 2019, DOI: https://doi.org/10.3390/mi10020152.
Y. Qiu et al., “Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging,” Sensors, vol. 15, no. 4, pp. 8020–8041, Apr. 2015, DOI: https://doi.org/10.3390/s150408020.
A. Ivanov and U. Mescheder, “Surface Micromachining (Sacrificial Layer) and Its Applications in Electronic Devices,” in Porous Silicon: From Formation to Applications: Optoelectronics, Microelectronics, and Energy Technology Applications, 1st ed., vol. 3, CRC Press, Taylor & Francis Group, LLC, 2016, pp. 129–141. DOI: https://doi.org/10.1201/b19042-9.
O. V. Korzhyk, V. S. Didkovskyi, O. H. Leiko, O. M. Petryshchev, S. A. Naida, and S. M. Poroshyn, Akustychni anteny. Navchalʹnyy posibnyk [Acoustic antennas. Study guide]. Kyiv, Ukraine: NTUU “KPI,” 2013.
A. Hajati et al., “Three-dimensional micro electromechanical system piezoelectric ultrasound transducer,” Appl Phys Lett, vol. 101, no. 25, Dec. 2012, DOI: https://doi.org/10.1063/1.4772469.
K. Suzuki, Y. Nakayama, N. Shimizu, and T. Mizuno, “Study on Wide-Band Piezoelectric Micro-Machined Ultrasound Transducers (pMUT) by Combined Resonance Frequencies and Controlling Poling Directions,” in 2018 IEEE International Ultrasonics Symposium (IUS), 2018, pp. 1–3, DOI: https://doi.org/10.1109/ULTSYM.2018.8579949.
K. Sun et al., “A 180-V<sub>pp</sub> Integrated Linear Amplifier for Ultrasonic Imaging Applications in a High-Voltage CMOS SOI Technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 2, pp. 149–153, Feb. 2015, DOI: https://doi.org/10.1109/TCSII.2014.2387687.
T. Kim et al., “Design of an Ultrasound Transceiver ASIC with a Switching-Artifact Reduction Technique for 3D Carotid Artery Imaging,” Sensors, vol. 21, no. 1, p. 150, Dec. 2020, DOI: https://doi.org/10.3390/s21010150.
“AFE58JD18 16-Channel, Ultrasound AFE with 14-Bit, 65-MSPS or 12-Bit, 80-MSPS ADC, Passive CW Mixer, I/Q Demodulator, and LVDS, JESD204B Outputs.” Texas Instruments, May-2016, URL: https://www.ti.com/lit/gpn/AFE58JD18.
M. J. Declerq, M. Schubert, and F. Clement, “5 V-to-75 V CMOS output interface circuits,” in 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 1993, pp. 162–163, DOI: https://doi.org/10.1109/ISSCC.1993.280014.
G. Jung, C. Tekes, A. Pirouz, F. L. Degertekin, and M. Ghovanloo, “Supply-Doubled Pulse-Shaping High Voltage Pulser for CMUT Arrays,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 3, pp. 306–310, Mar. 2018, DOI: https://doi.org/10.1109/TCSII.2017.2691676.
K. Chen, H.-S. Lee, A. P. Chandrakasan, and C. G. Sodini, “Ultrasonic Imaging Transceiver Design for CMUT: A Three-Level 30-Vpp Pulse-Shaping Pulser With Improved Efficiency and a Noise-Optimized Receiver,” IEEE J Solid-State Circuits, vol. 48, no. 11, pp. 2734–2745, Nov. 2013, DOI: https://doi.org/10.1109/JSSC.2013.2274895.
L. J. Svensson and J. G. Koller, “Driving a capacitive load without dissipating fCV/sup 2/,” in Proceedings of 1994 IEEE Symposium on Low Power Electronics, 1994, pp. 100–101, DOI: https://doi.org/10.1109/LPE.1994.573220.
A. S. Savoia et al., “An ultra-low-power fully integrated ultrasound imaging CMUT transceiver featuring a high-voltage unipolar pulser and a low-noise charge amplifier,” in 2014 IEEE International Ultrasonics Symposium, 2014, pp. 2568–2571, DOI: https://doi.org/10.1109/ULTSYM.2014.0641.
A. Banuaji and H.-K. Cha, “A 15-V Bidirectional Ultrasound Interface Analog Front-End IC for Medical Imaging Using Standard CMOS Technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 604–608, Aug. 2014, DOI: https://doi.org/10.1109/TCSII.2014.2327455.
“4-Channel Integrated Ultrasound Pulser HV7321 Second Harmonic Distortion Measurement.” Microchip Technology Inc., 2016, URL: https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/ApplicationNotes/00002303A.pdf.
W. T. Ang, C. Scurtescu, W. Hoy, T. El-Bialy, Y. Y. Tsui, and J. Chen, “Design and Implementation of Therapeutic Ultrasound Generating Circuit for Dental Tissue Formation and Tooth-Root Healing,” IEEE Trans Biomed Circuits Syst, vol. 4, no. 1, pp. 49–61, Feb. 2010, DOI: https://doi.org/10.1109/TBCAS.2009.2034635.
M. Tan et al., “A Front-End ASIC With High-Voltage Transmit Switching and Receive Digitization for 3-D Forward-Looking Intravascular Ultrasound Imaging,” IEEE J Solid-State Circuits, vol. 53, no. 8, pp. 2284–2297, Aug. 2018, DOI: https://doi.org/10.1109/JSSC.2018.2828826.
J. S. Kenji Hara, “A New 80V 32x32ch Low Loss Multiplexer LSI for a 3D Ultrasound Imaging System,” in Proceedings. ISPSD ’05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005., pp. 359–362, DOI: https://doi.org/10.1109/ISPSD.2005.1488025.
M.-H. Son, Y.-C. Lee, H.-M. Baek, H.-J. Choi, and J.-Y. Um, “A Programmable Gain Amplifier with Fast Transient Response for Medical Ultrasound System,” in 2022 19th International SoC Design Conference (ISOCC), 2022, pp. 302–303, DOI: https://doi.org/10.1109/ISOCC56007.2022.10031342.
M.-C. Chen et al., “A Pixel Pitch-Matched Ultrasound Receiver for 3-D Photoacoustic Imaging With Integrated Delta-Sigma Beamformer in 28-nm UTBB FD-SOI,” IEEE J Solid-State Circuits, pp. 1–14, 2017, DOI: https://doi.org/10.1109/JSSC.2017.2749425.
Y. M. Hopf et al., “A Pitch-Matched High-Frame-Rate Ultrasound Imaging ASIC for Catheter-Based 3-D Probes,” IEEE J Solid-State Circuits, vol. 59, no. 2, pp. 476–491, Feb. 2024, DOI: https://doi.org/10.1109/JSSC.2023.3299749.
I. O. Wygant et al., “Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 55, no. 2, pp. 327–342, Feb. 2008, DOI: https://doi.org/10.1109/TUFFC.2008.652.
F. U. Putri and H.-K. Cha, “A low-power low-noise ultrasonic receiver front-end IC for medical imaging systems,” in 2017 International SoC Design Conference (ISOCC), 2017, pp. 318–319, DOI: https://doi.org/10.1109/ISOCC.2017.8368916.
R. Moshavegh et al., “Automated hierarchical time gain compensation for in-vivo ultrasound imaging,” 2015, p. 941904, DOI: https://doi.org/10.1117/12.2081619.
K. Yoon, “Ultrasound diagnosis apparatus and time gain compensation (TGC) setting method performed by the ultrasound diagnosis apparatus,” EP 2 865 338 A1, 29-Apr-2015.
G. Vara, A. Rustici, A. Sechi, C. Mosconi, V. Lucidi, and R. Golfieri, “Texture analysis on ultrasound: The effect of time gain compensation on histogram metrics and gray-level matrices,” J Med Phys, vol. 45, no. 4, p. 249, 2020, DOI: https://doi.org/10.4103/jmp.JMP_82_20.
K. Kaviani, O. Oralkan, P. Khuri-Yakub, and B. A. Wooley, “A multichannel pipeline analog-to-digital converter for an integrated 3-D ultrasound imaging system,” IEEE J Solid-State Circuits, vol. 38, no. 7, pp. 1266–1270, Jul. 2003, DOI: https://doi.org/10.1109/JSSC.2003.813294.
B. Malki, T. Yamamoto, B. Verbruggen, P. Wambacq, and J. Craninckx, “A 70 dB DR 10 b 0-to-80 MS/s Current-Integrating SAR ADC With Adaptive Dynamic Range,” IEEE J Solid-State Circuits, vol. 49, no. 5, pp. 1173–1183, May 2014, DOI: https://doi.org/10.1109/JSSC.2014.2309086.
L. Demi, “Practical Guide to Ultrasound Beam Forming: Beam Pattern and Image Reconstruction Analysis,” Applied Sciences, vol. 8, no. 9, p. 1544, Sep. 2018, DOI: https://doi.org/10.3390/app8091544.
T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, 2nd ed. Elsevier, 2014, ISBN: 9780123964878.
T. Halvorsrod, W. Luzi, and T. S. Lande, “A log-domain /spl mu/beamformer for medical ultrasound imaging systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 12, pp. 2563–2575, Dec. 2005, DOI: https://doi.org/10.1109/TCSI.2005.857544.
T. K. Song and J. F. Greenleaf, “Ultrasonic dynamic focusing using an analog FIFO and asynchronous sampling,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 41, no. 3, pp. 326–332, May 1994, DOI: https://doi.org/10.1109/58.285466.
J. R. Talman, S. L. Garverick, and G. R. Lockwood, “Integrated circuit for high-frequency ultrasound annular array,” in Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003., pp. 477–480, DOI: https://doi.org/10.1109/CICC.2003.1249444.
J.-Y. Um et al., “A Single-Chip 32-Channel Analog Beamformer With 4-ns Delay Resolution and 768-ns Maximum Delay Range for Ultrasound Medical Imaging With a Linear Array Transducer,” IEEE Trans Biomed Circuits Syst, vol. 9, no. 1, pp. 138–151, Feb. 2015, DOI: https://doi.org/10.1109/TBCAS.2014.2325851.
J.-Y. Jeong, J.-S. An, S.-J. Jung, S.-K. Hong, and O.-K. Kwon, “A Low-Power Analog Delay Line Using a Current-Splitting Method for 3-D Ultrasound Imaging Systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 829–833, Jul. 2018, DOI: https://doi.org/10.1109/TCSII.2017.2717042.
G. Peyton, B. Farzaneh, H. Soleimani, M. G. Boutelle, and E. M. Drakakis, “Quadrature Synthetic Aperture Beamforming Front-End for Miniaturized Ultrasound Imaging,” IEEE Trans Biomed Circuits Syst, vol. 12, no. 4, pp. 871–883, Aug. 2018, DOI: https://doi.org/10.1109/TBCAS.2018.2836915.
P. A. Hager, A. Bartolini, and L. Benini, “Ekho: A 30.3W, 10k-Channel Fully Digital Integrated 3-D Beamformer for Medical Ultrasound Imaging Achieving 298M Focal Points per Second,” IEEE Trans Very Large Scale Integr VLSI Syst, vol. 24, no. 5, pp. 1936–1949, May 2016, DOI: https://doi.org/10.1109/TVLSI.2015.2488020.
J.-Y. Um et al., “An Analog-Digital Hybrid RX Beamformer Chip With Non-Uniform Sampling for Ultrasound Medical Imaging With 2D CMUT Array,” IEEE Trans Biomed Circuits Syst, vol. 8, no. 6, pp. 799–809, Dec. 2014, DOI: https://doi.org/10.1109/TBCAS.2014.2375958.