Prediction of the Time Distribution of Shannon and Renyi Entropy Based on the Theory of Moments

Main Article Content

Iehor V. Sedliarov
https://orcid.org/0009-0004-3523-4111
PhD Assoc.Prof. Kateryna Serhiivna Klen
https://orcid.org/0000-0002-6674-8332

Abstract

The application of the theory of moments to distributed generation systems for the construction of a reducing and predicting polynomial of the time distribution of entropy changes in time at the base interval is proposed. It is shown that in order to improve the accuracy of forecasting, it is necessary to take into account the fractal nature of energy consumption processes and use Rényi entropy in calculations. By taking into account the fractal nature of the energy consumption process and the use of Rényi entropy in calculations, an increase in prediction accuracy by 11% is achieved, resulting in the prediction of the time distribution of Shannon's entropy for power consumption with an error not exceeding 23%.

Article Details

How to Cite
[1]
I. V. Sedliarov and K. S. Klen, “Prediction of the Time Distribution of Shannon and Renyi Entropy Based on the Theory of Moments”, Мікросист., Електрон. та Акуст., vol. 30, no. 1, pp. 320821.1–320821.8, Feb. 2025.
Section
Electronic Systems and Signals

References

V. Popov, M. Fedosenko, V. Tkachenko, and D. Yatsenko, “Forecasting Consumption of Electrical Energy Using Time Series Comprised of Uncertain Data”, in 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2019, pp. 201–204., doi: https://doi.org/10.1109/ESS.2019.8764172.

S. Zheng, Y. Zhang, S. Zhou, Q. Ni, and J. Zuo, “Comprehensive Energy Consumption Assessment Based on Industry Energy Consumption Structure Part I: Analysis of Energy Consumption in Key Industries”, in 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022, pp. 4942–4949, doi: https://doi.org/10.1109/CIEEC54735.2022.9845929.

J. Yamnenko, T. Tereshchenko, L. Klepach, and D. Palii, “Forecasting of electricity consumption in SmartGrid”, in 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, 2017, pp. 208–211, doi: https://doi.org/10.1109/MEES.2017.8248891.

Zakon Ukraine № 810-IX vid 21.07.2020. Pro vnesennya zmin do deyakykh zakoniv Ukrayiny shchodo udoskonalennya umov pidtrymky vyrobnytstva elektrychnoyi enerhiyi z alʹternatyvnykh dzherel enerhiyi : [On amendments to some laws of Ukraine regarding the improvement of the conditions for supporting the production of electricity from alternative energy sources : Law of Ukraine No. 810-IX dated 21.07.2020]. Available: https://zakon.rada.gov.ua/laws/show/810-20#Text [Accessed: 16 December 2024].

A. J. Wilson, Entropijnye metody modelirovaniya slozhnykh sistem. Moscow: Nauka, 1978, p. 248.

H. Zhang and S.- sha He, “Analysis and Comparison of Permutation Entropy, Approximate Entropy and Sample Entropy”, in 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018, pp. 209–212, doi: https://doi.org/10.1109/IS3C.2018.00060

B. Wu, J. Yi, and Q. Yong, “Research on Principle and Application of Maximum Entropy”, in 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020, pp. 2571–2576, doi: https://doi.org/10.1109/CCDC49329.2020.9164431

Prangishvili, I. V., Entropijnye i drugie sistemnye zakonomernosti: Voprosy upravleniya slozhnymi sistemami. Moscow: Nauka, 2003, p. 428.

A. V. Makkuva and Y. Wu, “Equivalence of Additive-Combinatorial Linear Inequalities for Shannon Entropy and Differential Entropy”, IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3579–3589, May 2018, doi: https://doi.org/10.1109/TIT.2018.2815687.

K. Klen and V. Zhuikov, “Entropic Analysis of Distributed Generation Systems”, Radioelectronics and Communications Systems, vol. 64, no. 10, pp. 560–571, Oct. 2021. doi: https://doi.org/10.3103/S0735272721100046

Delas, N. I. “‘Correct entropy’in the analysis of complex systems: what is the consequence of rejecting the postulate of equal a priori probabilities?”, EEJET, vol. 4, no. 4(76), pp. 4–14, Aug. 2015. doi: https://doi.org/10.15587/1729-4061.2015.47332

K. S. Osypenko and V. Y. Zhuikov, “Heisenberg’s uncertainty principle in evaluating the level of power generated by renewable sources”, Tekhnichna Elektrodynamika, vol. 2017, no. 1, pp. 10–16, Jan. 2017. doi: https://doi.org/10.15407/techned2017.01.

Household electric power. Avaliable: https://www.kaggle.com/datasets/uciml/electric-power-consumption-data-set?resource=download [Accessed: 19-January-2023].

Strzelecki, Ryszard. Analysis and synthesis of voltage converters based on the theory of moments: Ph.D. thesis. Kyiv, 1984. 235 p.

G. M. Fichtenholtz, Course of differential and integral calculus. 2023, p. 1900.

M. Y. Burbelo, Designing power supply systems. Examples of calculations: training. manual for students higher education closing 2nd ed. Vinnytsia: UNIVERSUM-Vinnytsia, 2005, p. 147.

H. A. Sturges, “The Choice of a Class Interval”, Journal of the American Statistical Association, vol. 21, no. 153, pp. 65–66, Mar. 1926, doi: https://doi.org/10.1080/01621459.1926.10502161.

S. Makridakis, “Accuracy measures: theoretical and practical concerns”, International Journal of Forecasting, vol. 9, no. 4, pp. 527–529, Dec. 1993, doi: https://doi.org/10.1016/0169-2070(93)90079-3.

P. D. Lezhnyuk and Y. A. Shulle, Operational forecasting of electrical loads of power consumption systems using their fractal properties: monograph. Vinnytsia: VNTU, 2015, p. 104.

M. Zwolankowska, “Metoda segmentowowariacyjna. Nowa propozycja liczenia wymiaru fraktalnego”, Przegląd Statystyczny, vol. 47, no. 1–2, pp. 209–224, Jan. 2000.